The two situations are similar because in both you are trying to minimize the damage and make the best out of a bad situation
Answer:
Explanation:
In case of gas , work done
W = ∫ p dV , p is pressure and dV is small change in volume
the limit of integration is from Vi to Vf .
= ∫ p dV
= ∫ p₀
dV
= p₀
/ (
)
= - 5p₀ 
Taking limit from Vi to Vf
W = - 5 p₀ (
) ltr- atm.
Answer:
The net torque is 0.0372 N m.
Explanation:
A rotational body with constant angular acceleration satisfies the kinematic equation:
(1)
with ω the final angular velocity, ωo the initial angular velocity, α the constant angular acceleration and Δθ the angular displacement (the revolutions the sphere does). To find the angular acceleration we solve (1) for α:

Because the sphere stops the final angular velocity is zero, it's important all quantities in the SI so 2.40 rev/s = 15.1 rad/s and 18.2 rev = 114.3 rad, then:

The negative sign indicates the sphere is slowing down as we expected.
Now with the angular acceleration we can use Newton's second law:
(2)
with ∑τ the net torque and I the moment of inertia of the sphere, for a sphere that rotates about an axle through its center its moment of inertia is:
With M the mass of the sphere an R its radius, then:

Then (2) is:

Answer:
you have no picture
Explanation:
if it shows the arrows going towards eachother it is north and south. if it is not it will be either north and north or south and south