Answer:
The distance the planet Neptune travels in a single orbit around the Sun is <em>60.2π </em><em>AU.</em>
Explanation:
As it is given that the Neptune's orbit is circular, the formula that we have to use is the circumference of a circle in order to find the distance it travels in a single orbit around the Sun. In other words, you can say that the circumference of the circle is <em>equivalent</em> to the distance it travels around the Sun in a single orbit.
<em>The circumference of the circle = Distance Travelled (in a single orbit) = 2*π*R ---- (A)</em>
Where,
<em>R = Orbital radius (in this case) = 30.1 AU</em>
<em />
Plug the value of R in the equation (A):
<em>(A) => The circumference of the circle = 2*π*(30.1)</em>
<em> The circumference of the circle = </em><em>60.2π</em>
Therefore, the distance the planet Neptune travels in a single orbit around the Sun is <em>60.2π </em><em>AU.</em>
First, let's determine the gravitational force of the Earth exerted on you. Suppose your weight is about 60 kg.
F = Gm₁m₂/d²
where
m₁ = 5.972×10²⁴ kg (mass of earth)
m₂ = 60 kg
d = 6,371,000 m (radius of Earth)
G = 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²
F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(5.972×10²⁴ kg)/(6,371,000 m )²
F = 589.18 N
Next, we find the gravitational force exerted by the Sun by replacing,
m₁ = 1.989 × 10³⁰<span> kg
Distance between centers of sun and earth = 149.6</span>×10⁹ m
Thus,
d = 149.6×10⁹ m - 6,371,000 m = 1.496×10¹¹ m
Thus,
F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(1.989 × 10³⁰ kg)/(1.496×10¹¹ m)²
F = 0.356 N
Ratio = 0.356 N/589.18 N
<em>Ratio = 6.04</em>
B
Think of inertia of getting into a car accident without a seat belt although the car stops you will not you would likely fly out the window
Answer:
4m/s2
Explanation:
The following data were obtained from the question:
U (initial velocity) = 10m/s
V (final velocity) = 30m/s
t (time) = 5secs
a (acceleration) =?
Acceleration is the rate of change of velocity with time. It is represented mathematically as:
a = (V - U)/t
Now, with this equation i.e
a = (V - U)/t, we can calculate the acceleration of the race car as follow:
a = (V - U)/t
a = (30 - 10)/5
a = 20/5
a = 4m/s2
Therefore, the acceleration of the race car is 4m/s2
There are some missing data in the text of the problem. I've found them online:
a) coefficient of friction dry steel piston - steel cilinder: 0.3
b) coefficient of friction with oil in between the surfaces: 0.03
Solution:
a) The force F applied by the person (300 N) must be at least equal to the frictional force, given by:

where

is the coefficient of friction, while N is the normal force. So we have:

since we know that F=300 N and

, we can find N, the magnitude of the normal force:

b) The problem is identical to that of the first part; however, this time the coefficienct of friction is

due to the presence of the oil. Therefore, we have: