answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oliga [24]
2 years ago
10

A 20~\mu F20 μF capacitor has previously charged up to contain a total charge of Q = 100~\mu CQ=100 μC on it. The capacitor is t

hen discharged by connecting it directly across a 100-k\Omega100−kΩ resistor. At what point in time after the resistor is connected will the capacitor have 13.5~\mu C13.5 μC of charge remaining on it?
Physics
1 answer:
sertanlavr [38]2 years ago
4 0

Explanation:

The given data is as follows.

       C = 20 \times 10^{-6} F

        R = 100 \times 10^{3} ohm

        Q_{o} = 100 \times 10^{-6} C

          Q = 13.5 \times 10^{-6} C

Formula to calculate the time is as follows.

          Q_{t}  = Q_{o} [e^{\frac{-t}{\tau}]

       13.5 \times 10^{-6} = 100 \times 10^{-6} [e^{\frac{-t}{2}}]

               0.135 = e^{\frac{-t}{2}}

         e^{\frac{t}{2}} = \frac{1}{0.135}

                         = 7.407

           \frac{t}{2} = ln (7.407)

                      t = 4.00 s

Therefore, we can conclude that time after the resistor is connected will the capacitor is 4.0 sec.

You might be interested in
When jumping, a flea reaches a takeoff speed of 1.0 m/s over a distance of 0.47 mm .What is the flea's acceleration during the j
garri49 [273]
We can use kinematics here if we assume a constant acceleration (not realistic, but they want a single value answer, so it's implied). We know final velocity, vf, is 1.0 m/s, and we cover a distance, d, of 0.47mm or 0.00047 m (1m = 1000mm for conversion). We also can assume that the flea's initial velocity, vi, is 0 at the beginning of its jump. Using the equation vf^2 = vi^2 + 2ad, we can solve for our acceleration, a. Like so: a = (vf^2 - vi^2)/2d = (1.0^2 - 0^2)/(2*0.00047) = 1,064 m/s^2, not bad for a flea!
8 0
2 years ago
Read 2 more answers
Charge is distributed uniformly on the surface of a large flat plate. the electric field 2 cm from the plate is 30 n/c. the elec
AysviL [449]
The electric field produced by a large flat plate with uniform charge density on its surface can be found by using Gauss law, and it is equal to
E= \frac{\sigma}{2\epsilon_0}
where
\sigma is the charge density
\epsilon_0 is the vacuum permittivity

We see that the intensity of the electric field does not depend on the distance from the plate. Therefore, the strenght of the electric field at 4 cm from the plate is equal to the strength of the electric field at 2 cm from the plate:
E=30 N/C
7 0
2 years ago
Jules is conducting an experiment involving friction. He is measuring the temperature of various objects and surfaces after quic
Semenov [28]

Answer:

The correct prediction will be:  

The temperature of the surface of the ball bearing when rubbed over glass will be the least.

The incorrect prediction:

The tennis ball over the linoleum floor will have no friction, as the temperatures will not change.

6 0
2 years ago
The energy stored in oil come from the sun. Describe how energy from the sun became stored in oil
nirvana33 [79]

Crude oil has parts of decomposed dinosaurs and plants from millions of years ago. When the sun gave energy to the plants for their growth, the dinasours ate them which is now is stored in the oil today. So the sun gave energy to plants, dinosaurs ate them, pasted away and decomposed, then we drill and use it as oil.  

4 0
2 years ago
Read 2 more answers
Two uniform, solid cylinders of radius R and total mass M are connected along their common axis by a short, light rod and rest o
sveta [45]

Explanation:

A) To prove the motion of the center of mass of the cylinders is simple harmonic:

System diagram for given situation is shown in attached Fig. 1

We can prove the motion of the center of mass of the cylinders is simple harmonic if

a_{x} = -\omega^{2}  x

where aₓ is acceleration when attached cylinders move in horizontal direction:

<h3>PROOF:</h3>

rotational inertia for cylinders  is given as:

                                  I=\frac{1}{2}MR^{2} -----(1)

Newton's second law for angular motion is:

                                             ∑τ = Iα ------(2)

For linear motion in horizontal direction it is:

                                             ∑Fₓ = Maₓ ------ (3)

By definition of torque:

                                               τ  = RF --------(4)        

Put (4) and (1) in (2)

                                       RF=\frac{1}{2}MR^{2}\alpha

                                       RF=\frac{1}{2}MR^{2}\alpha

from Fig 3 it can be seen that fs is force by which the cylinders roll without slipping as they oscillate

So above equation becomes

                                   f_{s}=\frac{1}{2}MR\alpha------ (5)

As angular acceleration is related to linear by:

                                          a= R\alpha

Eq (5) becomes

                                    f_{s}=\frac{1}{2}Ma_{x}---- (6)

aₓ shows displacement in horizontal direction

From (3)

                                              ∑Fₓ = Maₓ

Fₓ is sum of fs and restoring force that spring exerts:

                                  \sum F_{x} = f_{s} - kx ----(7)

Put (7) in (3)

                                  f_{s} - kx  = Ma_{x}[/tex] -----(8)

Using (6) in (8)

                               \frac{1}{2}Ma_{x} - kx =Ma_{x}

                                     a_{x} = \frac{2k}{3M} x --- (9)

For spring mass system

                                  a= -\omega^{2} x ----- (10)

Equating (9) and (10)

                                  \omega^{2} = \frac{2k}{3M}

\omega = \sqrt{ \frac{2k}{3M}}

then (9) becomes

                                a_{x} = - \omega^{2}x

(The minus sign says that x and  aₓ  have opposite directions as shown in fig 3)

This proves that the motion of the center of mass of the cylinders is simple harmonic.

<h3 /><h3>B) Time Period</h3>

Time period is related to angular frequency as:

                                   T=\frac{2\pi }{\omega}

                                  T = 2\pi \sqrt{\frac{3M}{2k}

                           

 

5 0
2 years ago
Other questions:
  • Four students measured the acceleration of gravity. The accepted value for their location is 9.78 m/s2. Which student's measurem
    9·2 answers
  • A large ant is standing on the middle of a circus tightrope that is stretched with tension Ts. The rope has mass per unit length
    15·1 answer
  • A hair dryer with a resistance of 9.6 ohms operates at 120 volts for 2.5 minutes. The total electrical energy used by the dryer
    15·1 answer
  • In a certain clock, a pendulum of length L1 has a period T1 = 0.95s. The length of the pendulum
    15·1 answer
  • You are driving along a highway at 35.0 m/s when you hear the siren of a police car approaching you from behind at constant spee
    14·1 answer
  • Global Precipitation Measurement (GPM) is a tool scientists use to forecast weather. Which statements describe GPM? Select three
    7·1 answer
  • One of the Lady Spartans was falling to the ground after
    15·1 answer
  • A non-uniform rod 60cm long and weighs 32N is balanced at the 45cm mark. A load of 2N is hung on the zinc rod at the 25cm mark.
    11·1 answer
  • A cliff diver running 3.60 m/s dives out horizontally from the edge of a vertical cliff and reaches the water below 2.00 s later
    15·1 answer
  • 4. A trolley of mass 2kg rests next to a trolley of mass 3 kg on a flat
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!