Answer:
0.233
Explanation:
Given that
Diameter of rotor, d = 40 m
Power of rotor, P = 90 kW
Speed of the wind, v = 8 m/s
Density of air, p = 1.2 kg/m³
It is a known fact that
KE = ½mv², where mass flow rate, m
m = p.A.v, where Area, A
A = πd²/4
A = (3.142 * 40²)/4
A = 3.142 * 1600/4
A = 3.142 * 400
A = 1256.8 m², substitute for A in the mass flow rate equation
m = p.A.v
m = 1.2 * 1256.8 * 8
m = 12065.28, substitute for m in the KE equation
KE = ½mv²
KE = ½ * 12065.28 * 8²
KE = 12065.28 * 32
KE = 386088.96 W or
KE = 386.1 kW
Fraction of kinetic energy converted to electric energy is
Fraction = Electric Power / Total KE
Fraction = 90 / 386.1
Fraction = 0.233
Answer:
When the speed of the bottle is 2 m/s, the average maximum height of the beanbag is <u>0.10</u> m.
When the speed of the bottle is 3 m/s, the average maximum height of the beanbag is<u> 0.43</u> m.
When the speed of the bottle is 4 m/s, the average maximum height of the beanbag is <u>0.87</u> m.
When the speed of the bottle is 5 m/s, the average maximum height of the beanbag is <u>1.25</u> m.
When the speed of the bottle is 6 m/s, the average maximum height of the beanbag is <u>1.86</u> m.
Sorry for not answering early on! If anyone in the future needs help, I got these answers from 2020 egenuity, though I can't post the picture for proof. Stay Safe!
Answer:
a. The electric field lines are linear and perpendicular to the plates inside a parallel-plate capacitor, and always from positive plate to the negative plate. If a positive charge is released near the positive plate, then<em> it will follow a linear path towards the negative plate under the influence of electrostatic force, F = Eq</em>, where q is the charge of the particle. The electric field inside a parallel plate capacitor is constant and equal to
This can be calculated by Gauss' Law.
A positive charge always follow the electric field lines when released. Another approach is that the positive plate repels the positive charge and negative plate attracts the positive charge. Therefore, the positive charge follows a path towards the negative charge.
b. The particle moves from the higher potential to the lower potential. <em>The direction of motion is the same as the direction of the force that moves the particle, so the work done on the particle by that force is positive.</em>
Answer:
1,520.00 calories
Explanation:
Water molecules are linked by hydrogen bonds that require a lot of heat (energy) to break, which is released when the temperature drops. That energy is called specific heat or thermal capacity (ĉ) when it is enough to change the temperature of 1g of the substance (in this case water) by 1°C. Water ĉ equals 1 cal/(g.°C).
Given that ĉ = Q / (m.ΔT),
where Q= calories transferred between the system and its environment or another system (unity: calorie or cal) (what we are trying to find out),
m= mass of the substance (unity: grams or g), and
ΔT= difference of temperature (unity: Celsius degrees or °C); and
m= 95g and ΔT= 16°C:
Q= 1 cal/(g.°C).95g.16°C =<u> 1,520.00 cal
</u>
Answer:
<em>Entropy Change = 0.559 Times</em>
Explanation:
Entropy change is determined by the change in the micro-states of a system. As we know that the micro-states are the same as measure of disorderness between initial and final states, that's the the amount of change in micro-states determine how much of entropy has changed in the system.