Answer:
d. 37 °C
Explanation:
= mass of lump of metal = 250 g
= specific heat of lump of metal = 0.25 cal/g°C
= Initial temperature of lump of metal = 70 °C
= mass of water = 75 g
= specific heat of water = 1 cal/g°C
= Initial temperature of water = 20 °C
= mass of calorimeter = 500 g
= specific heat of calorimeter = 0.10 cal/g°C
= Initial temperature of calorimeter = 20 °C
= Final equilibrium temperature
Using conservation of heat
Heat lost by lump of metal = heat gained by water + heat gained by calorimeter

The correct answer is: 13900589.
Alpha brain waves are those most conducive to studying new information.
When consciously alert, we generally function along a beta brain rhythm. In diminishing this rhythm to alpha, we transition into a state of physical and mental relaxation that is ideal for learning new information and storing facts and data. Studies have shown that the effect of decreasing brain rhythm is linked to feelings of increased mental clarity and remembrance. As it is a prime condition for synthetic thought and creativity, it becomes easier to visualize and create associations (information is better learned and absorbed by using such study methods).
Hope this helps! :)
Answer:
There is 148.35 Joules of heat is released in the process.
Explanation:
Given that,
Heat capacity of the object, 
Initial temperature, 
Final temperature, 
We need to find the amount of heat released in the process. It is a concept of heat capacity. The heat released in the process is given by :

Let the mass of the object is 10 g or 0.01 kg
So,

Q = 148.35 Joules
So, there is 148.35 Joules of heat is released in the process. Hence, this is the required solution.
Answer:
0.775
Explanation:
The weight of an object on a planet is equal to the gravitational force exerted by the planet on the object:

where
G is the gravitational constant
M is the mass of the planet
m is the mass of the object
R is the radius of the planet
For planet A, the weight of the object is

For planet B,

We also know that the weight of the object on the two planets is the same, so

So we can write

We also know that the mass of planet A is only sixty percent that of planet B, so

Substituting,

Now we can elimanate G, MB and m from the equation, and we get

So the ratio between the radii of the two planets is
