Answer:
a) t=10.2s
b) The 2g-cube moves first
Explanation:
Since the electric force is the same on both cubes and so is the coefficient of static friction, the first one to move will be the one with less mass.
So, on the 2g-cube the sum of forces are:

Replacing the friction on the first equation:
Thus 
The electric force is:
Solving for q:
q=71.44nC
This amount divided by the rate at which they are being charged:
t = 71.44nC / 7nC/s = 10.2s
Answer:
47.76°
Explanation:
Magnitude of dipole moment = 0.0243J/T
Magnetic Field = 57.5mT
kinetic energy = 0.458mJ
∇U = -∇K
Uf - Ui = -0.458mJ
Ui - Uf = 0.458mJ
(-μBcosθi) - (-μBcosθf) = 0.458mJ
rearranging the equation,
(μBcosθf) - (μBcosθi) = 0.458mJ
μB * (cosθf - cosθi) = 0.458mJ
θf is at 0° because the dipole moment is aligned with the magnetic field.
μB * (cos 0 - cos θi) = 0.458mJ
but cos 0 = 1
(0.0243 * 0.0575) (1 - cos θi) = 0.458*10⁻³
1 - cos θi = 0.458*10⁻³ / 1.397*10⁻³
1 - cos θi = 0.3278
collect like terms
cosθi = 0.6722
θ = cos⁻ 0.6722
θ = 47.76°
Answer : Zamir's displacement and Talia's displacement is equal.
Explanation :
Displacement is explained to be the changing position of an object.
Zamir covers total distance 27 m and Talia covers total distance 19 m but Zamir's initial and final position and Talia's initial and final position is same.
So, we can say that Zamir's displacement and Talia's displacement is equal.
Physical forms are: gas,liquid,and solid
molecular cloud <interstellar cloud <1 Msun protostar <1 Msun star <intercloud gas
Explanation:
<u>Molecular cloud-</u> They are a variety of interstellar cloud in which molecular hydrogen can sustain themselves. They have a very low temperature ranging from -440 to -370 degrees Fahrenheit or between<u> 10 to 50 Kelvin. </u>Owing to their extremely low temperature, they appear mostly dark when viewed through telescopes.
<u>Interstellar cloud-</u> They are a congregation of a large number of interstellar gases, dust and plasma in any galaxy or universe. They have varying temperature depending on their proximity to a star. E.g. Neutral hydrogen atom clouds have a temperature of around <u>just 100 Kelvin</u> while those in the near vicinity of a star have temperatures as high as 10,000 Kelvin.
<u>1 Msun star-</u> These stars have temperature anywhere between <u>5300 and 6000 Kelvin</u>. The main source of such high surface temperature is nuclear fusion process where elemental hydrogen molecules are fused to form helium molecules.
<u>1 Msun protostar-</u> protostar is rather a young star which is still in formation phase (i.e. gathering mass from the parent molecular cloud). They have temperature anywhere between <u>2000-3000</u> kelvin and are accompanied by dust usually.
<u>Intercloud gas- </u>These are the remainder gases that are spread throughout the interstellar space. This Intercloud gas is divided into warm intercloud medium and extremely hot coronal gas with temperatures comparing to Sun’s corona. Warm intercloud forms the dominant part of intercloud gas with a temperature around <u>8000 Kelvin</u>.