answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kompoz [17]
2 years ago
8

Kevin Tan's Balance Sheet. Total assets are 13,200 dollars. Total liabilities are 9,150 dollars. What is Kevin’s net worth on Ma

y 31, 2013? $4,050 $9,260 $13,200 $22,460
Physics
1 answer:
Alexus [3.1K]2 years ago
5 0

Answer:

4,050

Explanation:

I did the math.

You might be interested in
The archerfish is a type of fish well known for its ability to catch resting insects by spitting a jet of water at them. This sp
Delvig [45]

Answer:

Explanation:

Here is the full question and answer,

The archerfish is a type of fish well known for its ability to catch resting insects by spitting a jet of water at them. This spitting ability is enabled by the presence of a groove in the roof of the mouth of the archerfish. The groove forms a long, narrow tube when the fish places its tongue against it and propels drops of water along the tube by compressing its gill covers.

When an archerfish is hunting, its body shape allows it to swim very close to the water surface and look upward without creating a disturbance. The fish can then bring the tip of its mouth close to the surface and shoot the drops of water at the insects resting on overhead vegetation or floating on the water surface.

Part A: At what speed v should an archerfish spit the water to shoot down a floating insect located at a distance 0.800 m from the fish? Assume that the fish is located very close to the surface of the pond and spits the water at an angle 60 degrees above the water surface.

Part B: Now assume that the insect, instead of floating on the surface, is resting on a leaf above the water surface at a horizontal distance 0.600 m away from the fish. The archerfish successfully shoots down the resting insect by spitting water drops at the same angle 60 degrees above the surface and with the same initial speed v as before. At what height h above the surface was the insect?

Answer

A.) The path of a projectile is horizontal and symmetrical ground. The time is taken to reach maximum height, the total time that the particle is in flight will be double that amount.

Calculate the speed of the archer fish.

The time of the flight of spitted water is,

t = \frac{{2v\sin \theta }}{g}

Substitute 9.8{\rm{ m}} \cdot {{\rm{s}}^{ - 2}} for g and 60^\circ  for \theta in above equation.

t = \frac{{2v\sin 60^\circ }}{{9.8{\rm{ m}} \cdot {{\rm{s}}^{ - 2}}}}\\\\ = \left( {0.1767\;v} \right){{\rm{m}}^{ - 1}} \cdot {{\rm{s}}^2}\\  

Spitted water will travel 0.80{\rm{ m}} horizontally.

Displacement of water in this time period is

x = vt\cos \theta

Substitute \left( {0.1767\;v} \right){{\rm{m}}^{ - 1}} \cdot {{\rm{s}}^2} for t\rm 60^\circ[tex] for [tex]\theta and 0.80{\rm{ m}} for x in above equation.

\\0.80{\rm{ m}} = v\left( {0.1767\;v} \right){{\rm{m}}^{ - 1}} \cdot {{\rm{s}}^2}\left( {\cos 60^\circ } \right)\\\\0.80{\rm{ m}} = {v^2}\left( {0.1767{\rm{ }}} \right)\frac{1}{2}{{\rm{m}}^{ - 1}} \cdot {{\rm{s}}^2}\\\\v = \sqrt {\frac{{2\left( {0.80{\rm{ m}}} \right)}}{{0.1767\;{{\rm{m}}^{ - 1}} \cdot {{\rm{s}}^2}}}} \\\\ = 3.01{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}\\

B.) There are two component of velocity vertical and horizontal. Calculate vertical velocity and horizontal velocity when the angle is given than calculate the time of flight when the horizontal distance is given. Value of the horizontal distance, angle and velocity are given. Use the kinematic equation to solve the height of insect above the surface.

Calculate the height of insect above the surface.

Vertical component of the velocity is,

{v_v} = v\sin \theta

Substitute 3.01\;{\rm{m}} \cdot {{\rm{s}}^{ - 1}} for v and 60^\circ  for \theta in above equation.

\\{v_v} = \left( {3.01\;{\rm{m}} \cdot {{\rm{s}}^{ - 1}}} \right)\sin 60^\circ \\\\ = 2.6067{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}\\

Horizontal component of the velocity is,

{v_h} = v\cos \theta

Substitute 3.01\;{\rm{m}} \cdot {{\rm{s}}^{ - 1}} for v and 60^\circ  for \theta in above equation.

\\{v_h} = \left( {3.01\;{\rm{m}} \cdot {{\rm{s}}^{ - 1}}} \right)\cos 60^\circ \\\\ = 1.505{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}\\

When horizontal ({0.60\;{\rm{m}}} distance away from the fish.  

The time of flight for distance (d) is ,

t = \frac{d}{{{v_h}}}

Substitute 0.60\;{\rm{m}} for d and 1.505{\rm{ m}} \cdot {{\rm{s}}^{ - 1}} for {v_h} in equation t = \frac{d}{{{v_h}}}

\\t = \frac{{0.60\;{\rm{m}}}}{{1.505{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}}}\\\\ = 0.3987{\rm{ s}}\\

Distance of the insect above the surface is,

s = {v_v}t + \frac{1}{2}g{t^2}

Substitute 2.6067{\rm{ m}} \cdot {{\rm{s}}^{ - 1}} for {v_v} and 0.3987{\rm{ s}} for t and - 9.8{\rm{ m}} \cdot {{\rm{s}}^{ - 2}} for g in above equation.

\\s = \left( {2.6067{\rm{ m}} \cdot {{\rm{s}}^{ - 1}}} \right)\left( {0.3987{\rm{ s}}} \right) + \frac{1}{2}\left( { - 9.8{\rm{ m}} \cdot {{\rm{s}}^{ - 2}}} \right){\left( {0.3987{\rm{ s}}} \right)^2}\\\\ = 0.260{\rm{ m}}\\

7 0
1 year ago
At what distance above earth would a satellite have a period of 125 min?
Nezavi [6.7K]
Rw^2 = GmM/r^2 
<span> Leads to 
</span><span> w^2 r^3 = GM 
</span><span> (2pi /T) ^2 r^3 = GM 
</span><span> 4pi^2 r^3 = GM T^2 
</span><span> r^3 = GM T^2 / 4pi^2 
</span><span> Work out r^3 then r. 
</span> T = 125 min = 125(60) = 7500 s 
<span> R = 6.38E6 m 
</span><span> m = 5.97E24 kg 
</span><span> G = 6.673E-11 
</span> r=<span> 8279791.78</span><span> m
 Since r = radius R of Earth + height above urface,h 
</span><span> h = r - R = </span><span> 8279791.78 - </span>6.38E6 = <span> <span>1899791.78 m
 h=</span></span><span> <span>1899.79178 Km</span></span>
5 0
1 year ago
Read 2 more answers
Aaron Agin nodded off while driving home from play practice this past Sunday evening. His 1500-kg car hit a series of guardrails
Inessa [10]

Answer: 6.48m/s

Explanation:

First, we know that Impulse = change in momentum

Initial velocity, u = 19.8m/s

Let,

Velocity after first collision = x m/s

Velocity after second collision = y m/s

Also, we know that

Impulse = m(v - u). But then, the question said, the guard rail delivered a "resistive" impulse. Thus, our impulse would be m(u - v).

5700 = 1500(19.8 - x)

5700 = 29700 - 1500x

1500x = 29700 - 5700

1500x = 24000

x = 24000/1500

x = 16m/s

Also, at the second guard rail. impulse = ft, so that

Impulse = 79000 * 0.12

Impulse = 9480

This makes us have

Impulse = m(x - y)

9480 = 1500(16 -y)

9480 = 24000 - 1500y

1500y = 24000 - 9480

1500y = 14520

y = 14520 / 1500

y = 9.68

Then, the velocity decreases by 3.2, so that the final velocity of the car is

9.68 - 3.2 = 6.48m/s

5 0
1 year ago
A uniform rod of mass M and length L is free to swing back and forth by pivoting a distance x from its center. It undergoes harm
Alisiya [41]

Answer:

The moment of inertia is 0.7500 kg-m².

Explanation:

Given that,

Mass = 2.2 kg

Distance = 0.49 m

If the length is 1.1 m

We need to calculate the moment of inertia

Using formula of moment of inertia

I=\dfrac{1}{12}ml^2+mx^2

Where, m = mass of rod

l = length of rod

x = distance from its center

Put the value into the formula

I=\dfrac{1}{12}\times2.2\times(1.1)^2+2.2\times(0.49)^2

I=0.7500\ kg-m^2

Hence, The moment of inertia is 0.7500 kg-m².

5 0
1 year ago
The two major problems with most motor vehicles are that they burn fossil fuels and _____________.
Citrus2011 [14]

Answer:

A. Create radioactive waste i believe

Explanation:

8 0
2 years ago
Read 2 more answers
Other questions:
  • propane, the gas used in barbeque grills, is made of carbon and hydrogen. Will the atoms that make up propane form covalent bond
    15·2 answers
  • A parachute works because the canvas of the parachute is acted upon by __________.
    5·2 answers
  • A 36,287 kg truck has a momentum of 907,175 kg • . What is the truck’s velocity?
    12·2 answers
  • A 0.12 kg bird is flying at a constant speed of 7.8 m/s. what is the birds conetic energy?
    13·2 answers
  • When Trinity pulls on the rope with her weight, Newton's Third Law of Motion tells us that the rope will _____
    8·2 answers
  • A rubber ball with a mass 0.20 kg is dropped vertically from a height of 1.5 m above the floor. The ball bounces off of the floo
    15·1 answer
  • 2. The water is then heated to its boiling point. Calculate the specific latent heat of
    9·1 answer
  • Geological evidence based on several radiometric techniques has provided a scientifically well-accepted age for the Earth. Repre
    11·1 answer
  • Two wires with equal lengths are made of pure copper. The diameter of wire A is three times the diameter of wire B. When 8 kg ma
    7·1 answer
  • An object travels 50 m in 4 s. It had no initial velocity and experiences constant acceleration. What is the magnitude of the ac
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!