Answer:
given,
mass of copper = 100 g
latent heat of liquid (He) = 2700 J/l
a) change in energy
Q = m Cp (T₂ - T₁)
Q = 0.1 × 376.812 × (300 - 4)
Q = 11153.63 J
He required
Q = m L
11153.63 = m × 2700
m = 4.13 kg
b) Q = m Cp (T₂ - T₁)
Q = 0.1 × 376.812 × (78 - 4)
Q = 2788.41 J
He required
Q = m L
2788.41 = m × 2700
m = 1.033 kg
c) Q = m Cp (T₂ - T₁)
Q = 0.1 × 376.812 × (20 - 4)
Q = 602.90 J
He required
Q = m L
602.9 = m × 2700
m =0.23 kg
Answer:
The lighter frog goes higher than the heavier frog.
The lighter frog is moving faster than the heavier frog
Explanation:
If both frogs have the same kinetic energy when they leave the ground, the following equality applies:

Now, if the only force acting on the frogs is gravity, when they reach to the maximum height, we can apply the following kinematic equation:

When h= hmax, the object comes momentarily to an stop, so vf =0
Solving for hmax:

As the lighter frog, in order to have the same kinetic energy than the heavier one, has a greater initial velocity, it will go higher than the other.
As a consequence of both having the same kinetic energy, the lighter frog will be moving faster than the heavier frog.
I don’t know what the angle is in your diagram so I used the angle from the vertical.
<span>The answer is cleavage
Cleavage is the way minerals will break along a plane of weakness in a crystal lattice. These plane of relative weakness is formed due to various reasons like the locations of atoms in a crystal lattice so these locations form the smooth repeting surface which could be found out by studying its lattice or are sometimes visible to naked eye.</span>
Answer:

Explanation:
As per Faraday's law of Electromagnetic induction we know that
Rate of change in magnetic flux will induce EMF in the closed conducting loop
so we have

now we have


now we have

now the induced EMF through this loop is given as


