answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slava [35]
2 years ago
15

In a certain clock, a pendulum of length L1 has a period T1 = 0.95s. The length of the pendulum

Physics
1 answer:
gulaghasi [49]2 years ago
8 0

Answer:

Ratio of length will be \frac{L_2}{L_1}=1.108

Explanation:

We have given time period of the pendulum when length is L_1 is T_1=0.95sec

And when length is L_2 time period T_2=1sec

We know that time period is given by

T=2\pi \sqrt{\frac{L}{g}}

So 0.95=2\pi \sqrt{\frac{L_1}{g}}----eqn 1

And 1=2\pi \sqrt{\frac{L_2}{g}}-------eqn 2

Dividing eqn 2 by eqn 1

\frac{1}{0.95}=\sqrt{\frac{L_2}{L_1}}

Squaring both side

\frac{L_2}{L_1}=1.108

You might be interested in
Using energy considerations and assuming negligible air resistance, show that a rock thrown from a bridge 20.0 m above water wit
melamori03 [73]

Answer:

Explanation:

Given that,

Height of the bridge is 20m

Initial before he throws the rock

The height is hi = 20 m

Then, final height hitting the water

hf = 0 m

Initial speed the rock is throw

Vi = 15m/s

The final speed at which the rock hits the water

Vf = 24.8 m/s

Using conservation of energy given by the question hint

Ki + Ui = Kf + Uf

Where

Ki is initial kinetic energy

Ui is initial potential energy

Kf is final kinetic energy

Uf is final potential energy

Then,

Ki + Ui = Kf + Uf

Where

Ei = Ki + Ui

Where Ei is initial energy

Ei = ½mVi² + m•g•hi

Ei = ½m × 15² + m × 9.8 × 20

Ei = 112.5m + 196m

Ei = 308.5m J

Now,

Ef = Kf + Uf

Ef = ½mVf² + m•g•hf

Ef = ½m × 24.8² + m × 9.8 × 0

Ef = 307.52m + 0

Ef = 307.52m J

Since Ef ≈ Ei, then the rock thrown from the tip of a bridge is independent of the direction of throw

7 0
2 years ago
How long does it take for the velocity of the rain drop to reach 99% of its terminal velocity? (assume the conditions from part
vodomira [7]
If you think about it its part a and b 
3 0
2 years ago
In the system shown above, the pulley is a uniform disk with a mass of .75 kg and a radius of 6.5 cm. The coefficient of frictio
lord [1]

Answer:

i am answering the same question 3rd time

please find the answer in the images attached.

5 0
2 years ago
For a particular reaction, the change in enthalpy is 51kJmole and the activation energy is 109kJmole. Which of the following cou
Ronch [10]

Answer

given,

change in enthalpy = 51 kJ/mole

change in activation energy = 109 kJ/mole

when a reaction is catalysed change in enthalpy between the product and the reactant does not change it remain constant.

where as activation energy of the product and the reactant decreases.

example:

ΔH = 51 kJ/mole

E_a= 83 kJ/mole

here activation energy decrease whereas change in enthalpy remains same.

5 0
2 years ago
A positive point charge Q1 = 2.5 x 10-5 C is fixed at the origin of coordinates, and a negative point charge Q2 = -5.0 x 10-6 C
mario62 [17]

Answer:

3.62 m  and - 1.4 m

Explanation:

Consider a location towards the positive side of x-axis beyond the location of charge Q₂

x = distance of the location from charge Q₂

d = distance between the two charges = 2 m

For the electric field to be zero at the location

E₁ = Electric field by charge Q₁ at the location = E₂ = Electric field by charge Q₂ at the location

\frac{kQ_{1}}{(2 + x)^{2}}= \frac{kQ_{2}}{x^{2}}

\frac{2.5\times 10^{-5}}{(2 + x)^{2}}= \frac{5 \times 10^{-6}}{x^{2}}

x = 1.62 m

So location is 2 + 1.62 = 3.62 m

Consider a location towards the negative side of x-axis beyond the location of charge Q₁

x = distance of the location from charge Q₁

d = distance between the two charges = 2 m

For the electric field to be zero at the location

E₁ = Electric field by charge Q₁ at the location = E₂ = Electric field by charge Q₂ at the location

\frac{kQ_{1}}{(x)^{2}}= \frac{kQ_{2}}{ (2 + x)^{2}}

\frac{2.5\times 10^{-5}}{(x)^{2}}= \frac{5 \times 10^{-6}}{(2+x)^{2}}

x = - 1.4 m

6 0
2 years ago
Other questions:
  • propane, the gas used in barbeque grills, is made of carbon and hydrogen. Will the atoms that make up propane form covalent bond
    15·2 answers
  • A box weighing 46 newtons rests on an incline that makes an angle of 25° with the horizontal. What is the magnitude of the compo
    5·1 answer
  • Every morning Ann walks her dog through the park, shown as a green square on the diagram below. They start at point 1, walk one
    11·1 answer
  • Assume that the light from the flashlight is light from a star. Identify the spot where the light from this “star” is most conce
    12·2 answers
  • Ten seconds after an electric fan is turned on, the fan rotates at 300 rev/min. its average angular acceleration is
    7·1 answer
  • One electron collides elastically with a second electron initially at rest. After the collision, the radii of their trajectories
    14·1 answer
  • An oxygen atom at a particular site within a DNA molecule can be made to execute simple harmonic motion when illuminated by infr
    5·1 answer
  • Would an oil ship moving at a speed of 10km/h have more or less momentum than a car moving at a speed of 100km/h? Explain your a
    15·2 answers
  • Click to review the online content. Then answer the question(s) below, using complete sentences. Scroll down to view additional
    15·1 answer
  • A rock is thrown down from the top of a cliff with a velocity of 3.61 m/s (down). The cliff is 28.4 m above the ground. Determin
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!