answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vera_Pavlovna [14]
2 years ago
11

The Earth's radius is 6378.1 kilometers. A mad scientist has come up with the simultaneously awesome and terrifying plan to incr

ease the speed of the Earth's rotation until people at the Earth's equator experience a centripetal (radial) acceleration with a magnitude equal to g (9.81 m/s2 ), eectively making them experience weightlessness. If the mad scientist succeeds in their dastardly plan, what would be the new period of the Earth's rotation?
Physics
2 answers:
ruslelena [56]2 years ago
7 0

Answer: T = 5068 s

Explanation:

Given

Radius of the earth, r = 6378.1 km

Centripetal acceleration, g = 9.81 m/s²

Period of rotation, T = ?

a = w²r, where

a is the centripetal acceleration

w is the angular velocity

r is the radius

9.81 = w² * 6378.1*10^3

w² = 9.81 / 6378.1*10^3

w² = 1.538*10^-6

w = 1.24*10^-3 rad/s

To get the period of the earth, we use the formula

w = 2π / T, so that

T = 2π / w

T = (2 * 3.142) / 1.24*10^-3

T = 6.284 / 1.24*10^-3

T = 5067.74 s

Therefore, the earth would rotate at a period of 5068 s or 1 hour and 24 minutes

NemiM [27]2 years ago
5 0

Answer:

The time period of Earth’s rotation would be 84.4 minutes

Explanation:

Given that,

Centripetal acceleration = 9.81 m/s²

Radius ,r = 6378.1 km

Velocity, v

Centripetal acceleration is

a_c=\dfrac{v^2}{r}

a_c=\dfrac{v^2}{r}\\\\\Rightarrow v=\sqrt{a_cr}\\\\\Rightarrow v=\sqrt{9.81\times 6378100}\\\\\Rightarrow v=7910.067\ m/s

Time period is given by

T=\dfrac{2\times \pi \times r}{v\times 60}\\\\ T=\dfrac{2\times \pi \times 6378.1\times 10^3}{7910.06706\times 60}\\\\ T=84.4\ minutes

Hence, the time period of Earth’s rotation would be 84.4 minutes

You might be interested in
Think about how geothermal energy is captured and used. Explain how geothermal energy shows the flow of thermal energy from hot
kumpel [21]

Answer:

People can capture geothermal energy through: Geothermal power plants, which use heat from deep inside the Earth to generate steam to make electricity. Geothermal heat pumps, which tap into heat close to the Earth's surface to heat water or provide heat for buildings

When the weather is cold, the water or refrigerant heats up as it travels through the part of the loop that's buried underground. Once it gets back above ground, the warmed water or refrigerant transfers heat into the building. The water or refrigerant cools down after its heat is transferred.

8 0
2 years ago
This is really urgent
hodyreva [135]

20) When light passes from air to glass and then to air

21) When a light ray enters a medium with higher optical density, it bends towards the normal

22) Index of refraction describes the optical density

23) Light travels faster in the material with index 1.1

24) Glass refracts light more than water

25) Index of refraction is n=\frac{c}{v}

26) Critical angle: [tex]sin \theta_c = \frac{n_2}{n_1}[/tex]

27) Critical angle is larger for the glass-water interface

Explanation:

20)

It is possible to slow down light and then speed it up again by making light passing from a medium with low optical density (for example, air) into a medium with higher optical density (for example, glass), and then make the light passing again from glass to air.

This phenomenon is known as refraction: when a light wave crosses the interface between two different mediums, it changes speed (and also direction). The speed decreases if the light passes from a medium at lower optical density to a medium with higher optical density, and viceversa.

21)

The change in direction of light when it passes through the boundary between two mediums is given by Snell's law:

n_1 sin \theta_1 = n_2 sin \theta_2

with

n_1, n_2 are the refractive index of 1st and 2nd medium

\theta_1, \theta_2 are the angle of incidence and refraction (the angle between the incident ray (or refracted ray) and the normal to the boundary)

The larger the optical density of the medium, the larger the value of n, the smaller the angle: so, when a light ray enters a medium with higher optical density, it bends towards the normal.

22)

The index of refraction describes the optical density of a medium. More in detail:

  • A high index of refraction means that the material has a high optical density, which means that light travels more slowly into that medium
  • A low index of refraction means that the material has a low optical density, which means that light travels faster into that medium

Be careful that optical density is a completely different property from density.

23)

As we said in part 22), the index of refraction describes the optical density of a medium.

In this case, we have:

  • A material with refractive index of 1.1
  • A material with refractive index of 2.2

As we said previously, light travels faster in materials with a lower refractive index: therefore in this case, light travels more quickly in material 1, which has a refractive index of only 1.1, than material 2, whose index of refraction is much higher (2.2).

24)

Rewriting Snell's law,

sin \theta_2 = \frac{n_1}{n_2}sin \theta_1 (1)

For light moving from air to water:

n_1 \sim 1.00 is the index of refraction of air

n_2 = 1.33 is the index of refraction ofwater

In this case, \frac{n_1}{n_2}=\frac{1.00}{1.33}=0.75

For light moving from air to glass,

n_2 = 1.51 is the index of refraction of glass

And so

\frac{n_1}{n_2}=\frac{1.00}{1.51}=0.66

From eq.(1), we see that the angle of refraction \theta_2 is smaller in the 2nd case: so glass refracts light more than water, because of its higher index of refraction.

25)

The index of refraction of a material is

n=\frac{c}{v}

c is the speed of light in a vacuum

v is the speed of light in the material

So, the index of refraction is inversely proportional to the speed of light in the material:

  • The higher the index of refraction, the slower the light
  • The lower the index of refraction, the faster the light

26)

From Snell's law,

sin \theta_2 = \frac{n_1}{n_2}sin \theta_1

We notice that when light moves from a medium with higher refractive index to a medium with lower refractive index, n_1 > n_2, so \frac{n_1}{n_2}>1, and since sin \theta_2 cannot be larger than 1, there exists a maximum value of the angle of incidence \theta_c (called critical angle) above which refraction no longer occurs: in this case, the incident light ray is completely reflected into the original medium 1, and this phenomenon is called total internal reflection.

The value of the critical angle is given by

sin \theta_c = \frac{n_2}{n_1}

For angles of incidence above this value, total internal reflection occurs.

27)

Using:

sin \theta_c = \frac{n_2}{n_1}

For the interface glass-air,

n_1 \sim 1.51\\n_2 = 1.00

The critical angle is

\theta_c = sin^{-1}(\frac{n_2}{n_1})=sin^{-1}(\frac{1.00}{1.51})=41.5^{\circ}

For the interface glass-water,

n_1 \sim 1.51\\n_2 = 1.33

The critical angle is

\theta_c = sin^{-1}(\frac{n_2}{n_1})=sin^{-1}(\frac{1.33}{1.51})=61.7^{\circ}

So, the critical angle is larger for the glass-water interface.

Learn more about refraction:

brainly.com/question/3183125

brainly.com/question/12370040

#LearnwithBrainly

7 0
2 years ago
In the Daytona 500 auto race, a Ford Thunderbird and a Mercedes Benz are moving side by side down a straightaway at 71.0 m/s. Th
qaws [65]

Answer:

The distance between both cars is 990 m

Explanation:

The equations for the position and the velocity of an object moving in a straight line are as follows:

x = x0 + v0 * t + 1/2 * a * t²

v = v0 + a * t

where:

x = position of the car at time "t"

x0 = initial position

v0 = initial speed

t = time

a = acceleration

v = velocity

First let´s find how much time it takes the driver to come to stop (v = 0).  We will consider the origin of the reference system as the point at which the driver realizes she must stop. Then x0 = 0

With the equation of velocity, we can obtain the acceleration and replace it in the equation of position, knowing that the position will be 250 m at that time.

v = v0 + a*t

v-v0 / t = a

0 m/s - 71.0 m/s / t =a

-71.0 m/s / t = a

Replacing in the equation for position:

x = v0* t +1/2 * a * t²

250 m = 71.0 m/s * t + 1/2 *(-71.0 m/s / t) * t²

250 m = 71.0 m/s * t - 1/2 * 71.0 m/s * t

250m = 1/2 * 71.0m/s *t

<u>t = 2 * 250 m / 71.0 m/s = 7.04 s</u>

It takes the driver 7.04 s to stop.

Then, we can calculate how much time it took the driver to reach her previous speed. The procedure is the same as before:

v = v0 + a*t

v-v0 / t = a      now v0 = 0 and v = 71.0 m/s

(71.0 m/s - 0 m/s) / t = a

71.0 m/s / t =a

Replacing in the position equation:

x = v0* t +1/2 * a * t²      

390 m = 0 m/s * t + 1/2 * 71.0 m/s / t * t²       (In this case, the initial position is in the pit, then x0 = 0 because it took 390 m from the pit to reach the initial speed).

390m * 2 / 71.0 m/s = t

<u>t = 11.0 s</u>

In total, it took the driver 11.0s + 5.00 s + 7.04 s = 23.0 s to stop and to reach the initial speed again.

In that time, the Mercedes traveled the following distance:

x = v * t = 71.0 m/s * 23.0 s = 1.63 x 10³ m

The Thunderbird traveled in that time 390 m + 250 m = 640 m.

The distance between the two will be then:

<u>distance between both cars = 1.63 x 10³ m - 640 m = 990 m.  </u>

3 0
2 years ago
Length of two cylinders are measured to be L1 = 5.62 +/- 0.01cm and L2 = 4.34 +/- 0.02cm.
zavuch27 [327]

Answer:

Explanation:

Just look at the figure

7 0
2 years ago
A swimmer does 3,560 J of work in 55 s. What is the swimmer’s power output? Round your answer to two significant figures. The po
Natasha2012 [34]
The value of the swimmer's power output is calculated by dividing the work done by the time it took for the work to be completed. From the given in this item,
                              P = 3560 J/ 55 s = 64.73 W
Rounding off to two significant figures will give us 65 W. 
6 0
2 years ago
Read 2 more answers
Other questions:
  • Will two separate 50db sounds together constitute a 100db sound explain mathematical
    13·1 answer
  • Sean, after being so happy for two full days that he reported he "never needed much sleep," now is stating he is so sad that he
    6·2 answers
  • a satellite is orbiting Earth at a distance of 35 kilometers. The satellite has a mass of 500 kilograms. what is the force betwe
    7·2 answers
  • An argon ion laser puts out 5.0 W of continuous power at a wavelength of 532 nm. The diameter of the laser beam is 5.5 mm. If th
    14·1 answer
  • Charge Q is distributed uniformly throughout the volume of an insulating sphere of radius R = 4.00 cm. At a distance of r = 8.00
    11·1 answer
  • A metal sphere with radius R1 has a charge Q1. Take the electric potential to be zero at an infinite distance from the sphere.Ex
    5·1 answer
  • For incident ray C, the angle of refraction is 90°. The refracted ray C has the smallest amount of energy of any refracted ray.
    11·1 answer
  • A satellite in geostationary orbit is used to transmit data via electromagnetic radiation. The satellite is at a height of 35,00
    15·1 answer
  • If you wanted to find the area of the hot filament in a light bulb, you would have to know the temperature (determinable from th
    5·1 answer
  • Which of these is the largest? <br> a. star<br> b. nebula<br> c. galaxy<br> d. sun
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!