answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nataly_w [17]
2 years ago
13

While looking at bromine (Br) on the periodic table, a student needs to find another element with very similar chemical properti

es but with a different atomic mass. Which best describes the student’s options? There are two possible elements, and they are directly to the left and right of bromine. There are two possible elements, and they are directly above and below bromine. There are many possible elements, and they are all in the same vertical column as bromine. There are many possible elements, and they are all in the same horizontal row as bromine.

Physics
2 answers:
Ede4ka [16]2 years ago
7 0

Answer: There are many possible elements, and they are all in the same vertical column as bromine.

Explanation:

In a periodic table, the elements are arranged according to the atomic number. The elements arranged in the same vertical column (known as groups) have same valence configuration and therefore have same chemical properties. Hence, there would be more possible elements having same chemical properties in the same vertical column (group) as Bromine.

d1i1m1o1n [39]2 years ago
4 0

Answer:  There are many possible elements, and they are all in the same vertical column as bromine

Explanation: All the elements in the same vertical columns or same groups have similar chemical properties due to the presence of similar valence shell configurations but have different masses as the number of protons and neutrons keep on increasing on moving down the group.

All the halogens (members of fluorine group) are short of one electron each to attain their stable noble gas configuration and hence behave similarly.

[X]:ns^2np^5

The elements present in the same horizontal row or same period differ in the chemical properties as they have different valence shell configurations.

You might be interested in
When a vertical beam of light passes through a transparent medium, the rate at which its intensity I decreases is proportional t
antoniya [11.8K]

Answer:

Intensity of beam 18 feet below the surface is about 0.02%

Explanation:

Using Lambert's law

Let dI / dt = kI, where k is a proportionality constant, I is intensity of incident light and t is thickness of the medium

then dI / I = kdt

taking log,

ln(I) = kt + ln C

I = Ce^kt

t=0=>I=I(0)=>C=I(0)

I = I(0)e^kt

t=3 & I=0.25I(0)=>0.25=e^3k

k = ln(0.25)/3

k = -1.386/3

k = -0.4621

I = I(0)e^(-0.4621t)

I(18) = I(0)e^(-0.4621*18)

I(18) = 0.00024413I(0)

Intensity of beam 18 feet below the surface is about 0.2%

3 0
2 years ago
Two uniform, solid cylinders of radius R and total mass M are connected along their common axis by a short, light rod and rest o
sveta [45]

Explanation:

A) To prove the motion of the center of mass of the cylinders is simple harmonic:

System diagram for given situation is shown in attached Fig. 1

We can prove the motion of the center of mass of the cylinders is simple harmonic if

a_{x} = -\omega^{2}  x

where aₓ is acceleration when attached cylinders move in horizontal direction:

<h3>PROOF:</h3>

rotational inertia for cylinders  is given as:

                                  I=\frac{1}{2}MR^{2} -----(1)

Newton's second law for angular motion is:

                                             ∑τ = Iα ------(2)

For linear motion in horizontal direction it is:

                                             ∑Fₓ = Maₓ ------ (3)

By definition of torque:

                                               τ  = RF --------(4)        

Put (4) and (1) in (2)

                                       RF=\frac{1}{2}MR^{2}\alpha

                                       RF=\frac{1}{2}MR^{2}\alpha

from Fig 3 it can be seen that fs is force by which the cylinders roll without slipping as they oscillate

So above equation becomes

                                   f_{s}=\frac{1}{2}MR\alpha------ (5)

As angular acceleration is related to linear by:

                                          a= R\alpha

Eq (5) becomes

                                    f_{s}=\frac{1}{2}Ma_{x}---- (6)

aₓ shows displacement in horizontal direction

From (3)

                                              ∑Fₓ = Maₓ

Fₓ is sum of fs and restoring force that spring exerts:

                                  \sum F_{x} = f_{s} - kx ----(7)

Put (7) in (3)

                                  f_{s} - kx  = Ma_{x}[/tex] -----(8)

Using (6) in (8)

                               \frac{1}{2}Ma_{x} - kx =Ma_{x}

                                     a_{x} = \frac{2k}{3M} x --- (9)

For spring mass system

                                  a= -\omega^{2} x ----- (10)

Equating (9) and (10)

                                  \omega^{2} = \frac{2k}{3M}

\omega = \sqrt{ \frac{2k}{3M}}

then (9) becomes

                                a_{x} = - \omega^{2}x

(The minus sign says that x and  aₓ  have opposite directions as shown in fig 3)

This proves that the motion of the center of mass of the cylinders is simple harmonic.

<h3 /><h3>B) Time Period</h3>

Time period is related to angular frequency as:

                                   T=\frac{2\pi }{\omega}

                                  T = 2\pi \sqrt{\frac{3M}{2k}

                           

 

5 0
2 years ago
A policeman kicks in a door with a force of 4500 N. What force does the door apply to the policeman’s leg?
Soloha48 [4]

Answer:

-4500 N

Source: Brainly

The police officer must be angry 0_0

4 0
2 years ago
An astronaut weighs 8.00 × 102 newtons on the sur- face of Earth. What is the weight of the astronaut 6.37 × 106 meters above th
kolbaska11 [484]

Answer:

mg=200.4 N.

Explanation:

This problem can be solved using Newton's law of universal gravitation: F=G\frac{m_{1}m_{2}}{r^{2}},

where F is the gravitational force between two masses m_{1} and m_{2}, r is the distance between the masses (their center of mass), and G=6.674*10^{-11}(m^{3}kg^{-1}s^{-2}) is the gravitational constant.

We know the weight of the astronout on the surface, with this we can find his mass. Letting w_{s} be the weight on the surface:

w_{s}=mg,

mg=8*10^{2},

m=(8*10^{2})/g,

since we now that g=9.8m/s^{2} we get that the mass is

m=81.6kg.

Now we can use Newton's law of universal gravitation

F=G\frac{Mm}{r^{2}},  

where m is the mass of the astronaut and M is the mass of the earth. From Newton's second law we know that

F=ma,

in this case the acceleration is the gravity so

F=mg, (<u>becarefull, gravity at this point is no longer</u> 9.8m/s^{2} <u>because we are not in the surface anymore</u>)

and this get us to

mg=G\frac{Mm}{r^{2}}, where mg is his new weight.

We need to remember that the mass of the earth is M=5.972*10^{24}kg and its radius is 6.37*10^{6}m.

The total distance between the astronaut and the earth is

r=(6.37*10^{6}+6.37*10^{6})=2(6.37*10^{6})=12.74*10^{6} meters.

Now we can compute his weigh:

mg=G\frac{Mm}{r^{2}},

mg=(6.674*10^{-11})\frac{(5.972*10^{24})(81.6)}{(12.74*10^{6})^{2}},

mg=200.4 N.

5 0
2 years ago
A 5.00 kilogram mass is traveling at 100. meters per second. Determine the speed of the mass after an impulse with a magnitude o
faltersainse [42]

m = mass = 5 kg

v_{i} = initial velocity = 100 m/s

v_{f} = final velocity = ?

I = impulse = 30 Ns

Using the impulse-change in momentum equation

I = m(v_{f} - v_{i})

30 = 5 (v_{f} - 100)

v_{f} = 106 m/s

5 0
2 years ago
Read 2 more answers
Other questions:
  • A shopping cart slows as it moves along a level floor. Which statement describes the energies of the cart?
    8·1 answer
  • 50 J of work was performed in 20 seconds. How much power was used to do this task?
    5·2 answers
  • Block 1 of mass m1 slides along a frictionless floor and into a one-dimensional elastic collision with stationary block 2 of mas
    5·1 answer
  • When a submarine dives to a depth of 5.0 × 102 m, how much pressure, in pa, must its hull be able to withstand? how many times l
    12·2 answers
  • Consider the waveform expression. y (x, t) = ym sin (0.333x + 5.36 + 585t) The transverse displacement (y) of a wave is given as
    7·1 answer
  • A trebuchet was a hurling machine built to attack the walls of a castle under siege. A large stone could be hurled against a wal
    6·1 answer
  • 2. A pebble is dropped down a well and hits the water 1.5 s later. Using the equations for motion with constant acceleration, de
    14·1 answer
  • Male Rana catesbeiana bullfrogs are known for their loud mating call. The call is emitted not by the frog's mouth but by its ear
    14·1 answer
  • A person shooting at a target from a distance of 450 metres finds that the sound of the bullet hitting the target comes 1 / 2 se
    5·1 answer
  • Q1: A runner is jogging in a straight line at a steady vr= 6.8 km/hr. When the runner is L= 2.4 km from the finish line, a bird
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!