Answer:
The friend on moon will be richer.
Explanation:
We must calculate the mass of gold won by each person, to tell who is richer. For that purpose we will use the following formula:
W = mg
m = W/g
where,
m = mass of gold
W = weight of gold
g = acceleration due to gravity on that planet
<u>FOR FRIEND ON MOON</u>:
W = 1 N
g = 1.625 m/s²
Therefore,
m = (1 N)/(1.625 m/s²)
m(moon) = 0.6 kg
<u>FOR ME ON EARTH</u>:
W = 1 N
g = 9.8 m/s²
Therefore,
m = (1 N)/(9.8 m/s²)
m(earth) = 0.1 kg
Since, the mass of gold on moon is greater than the mass of moon on earth.
<u>Therefore, the friend on moon will be richer.</u>
Answer:
The force has been reduced by 8018 N
Explanation:
The impulse exerted on the car during the crash is equal to the product of the force exerted and the duration of the collision, and it is also equal to the change in momentum of the car. So we can write:

where:
F is the force exerted on the car
is the duration of the collision
m = 1400 kg is the mass of the car
is the change in velocity of the car
We can re-write the equation as

In the 1st collision, the time is 1.5 seconds, so the force is

In the 2nd collision, the time is increased to 2.2 seconds, so the force is

Therefore, the force has been reduced by:

Answer:
1.17894 m
Explanation:
The rock is at one end of the rod which is 0.211 m from the fulcrum
F = Force
d = Distance
L = Length of rod
M = Mass of rock = 325 kg
g = Acceleration due to gravity = 9.81 m/s²
Torque

Torque of man

Torque of rock

The torques acting on the system is conserved

The length of the rod is 1.17894 m
Answer:
The centripetal force acting on the skater is <u>48.32 N.</u>
Explanation:
Given:
Radius of circular track is, 
Tangential speed of the skater is, 
Mass of the skater is, 
We are asked to find the centripetal force acting on the skater.
We know that, when an object is under circular motion, the force acting on the object is directly proportional to the mass and square of tangential speed and inversely proportional to the radius of the circular path. This force is called centripetal force.
Centripetal force acting on the skater is given as:

Now, plug in the given values of the known quantities and solve for centripetal force,
. This gives,

Therefore, the centripetal force acting on the skater is 48.32 N.
To solve this problem, we use the formula:
I100 / I1 = [P / 4π(100m)^2] / [P / 4π(1m)^2]
I100 / I1 = 1 / 100^2
I100 / I1 = 10^-4
Therefore the change in intensity from 1m to 100m in decibels is:
B100 – B1 = 10 log(10^-4) dB = -40 dB
So the intensity at 100m is calculated as:
B100 = B1 – 40 dB = 140 dB – 40 dB = 100 dB
Answer:
100 dB