Answer:
25.82 m/s
Explanation:
We are given;
Force exerted by baseball player; F = 100 N
Distance covered by ball; d = 0.5 m
Mass of ball; m = 0.15 kg
Now, to get the velocity at which the ball leaves his hand, we will equate the work done to the kinetic energy.
We should note that work done is a measure of the energy exerted by the baseball player.
Thus;
F × d = ½mv²
100 × 0.5 = ½ × 0.15 × v²
v² = (2 × 100 × 0.5)/0.15
v² = 666.67
v = √666.67
v = 25.82 m/s
Answer:
W = -510.98J
Explanation:
Force = 43N, 61° SW
Displacement = 12m, 22° NE
Work done is given as:
W = F*d*cosA
where A = angle between force and displacement.
Angle between force and displacement, A = 61 + 90 + 22 = 172°
W = 43 * 12 * cos172
W = -510.98J
The negative sign shows that the work done is in the opposite direction of the force applied to it.
Answer:
See the answer below
Explanation:
<u>Independent variable</u>: Type of drug (Mem-Reen or placebo)
<u>Dependent variable</u>: memories
<u>Experimental group</u>: The group that was given Mem-Reen
<u>Control group</u>: The group that was given placebo
<u>Constants</u>: Food, hours of sleep, memory test procedures.
The independent variable is an input variable that produces effects on the dependent variable. As the variable is changed, it produces different effects on the dependent variable.
The dependent variable is the actual variable that is measured during an experiment. It is the main purpose of setting-up of an experiment.
The experimental group is also referred to as the treatment group while the control group is the group that does not receive treatment at all or they receive fake treatment/placebo.
Constants are unchanging variables included in experiments. They remain unchanged both in the treatment and the control group, otherwise, the outcome of the experiment will be unreliable.
Answer:
KE= 1/2mv²
Explanation:
The kinetic energy of a body is the energy possessed by virtue of the body in motion
Given the parameters
m which is the mass of the body
v which is the velocity of the body too
K.E = kinetic energy
The expression for the kinetic energy of a body is given as
KE= 1/2mv²
Answer:
0.83 ω
Explanation:
mass of flywheel, m = M
initial angular velocity of the flywheel, ω = ωo
mass of another flywheel, m' = M/5
radius of both the flywheels = R
let the final angular velocity of the system is ω'
Moment of inertia of the first flywheel , I = 0.5 MR²
Moment of inertia of the second flywheel, I' = 0.5 x M/5 x R² = 0.1 MR²
use the conservation of angular momentum as no external torque is applied on the system.
I x ω = ( I + I') x ω'
0.5 x MR² x ωo = (0.5 MR² + 0.1 MR²) x ω'
0.5 x MR² x ωo = 0.6 MR² x ω'
ω' = 0.83 ω
Thus, the final angular velocity of the system of flywheels is 0.83 ω.