Answer:
T = 273 + (-50) = 273 – 50 = 223 K
R = 188.82 J / kg K for CO2
Density (Martian Atmosphere) = P / RT = 900 / 188.92 x 223 = 900 / 42129.16 = 0.0213 kg / 
T = 273 +18 = 291 K, R = 287 J / kg k (for air) P = 101.6 k Pa = 101600 Pa
Density (Earth Atmosphere) = P / RT = 101600 / 287 x 291 = 1.216 kg /
Answer:
980 kJ
Explanation:
Work = change in energy
W = mgh
W = (1000 kg/m³ × 5.0 m³) (9.8 m/s²) (20 m)
W = 980,000 J
W = 980 kJ
The pump does 980 kJ of work.
Answer:
Rate of change of water will be -6 gallon/minute
Explanation:
We have given water in the tank as the function of time as

We have to find the rate of change of water in the tank at t = 3 minute
For rate of change we have to differentiate both side
So 
At t = 3 minute

Answer:
The inducerd emf is 1.08 V
Solution:
As per the question:
Altitude of the satellite, H = 400 km
Length of the antenna, l = 1.76 m
Magnetic field, B = 
Now,
When a conducting rod moves in a uniform magnetic field linearly with velocity, v, then the potential difference due to its motion is given by:

Here, velocity v is perpendicular to the rod
Thus
e = lvB (1)
For the orbital velocity of the satellite at an altitude, H:

where
G = Gravitational constant
= mass of earth
= radius of earth

Using this value value in eqn (1):

Answer:
0.22m/s
Explanation:
The total momentum of the System is conserved. Total momentum of the system before the collision is equal to the total momentum of the system after collision. The total momentum is the sum of individual momentum of all the objects in that system.
momentum of an object = mass* velocity
Total Momentum before collision = 0.2*0.3 + 0.1*0.1= 0.07 kg⋅m/s;
Total momentum after collision = 0.1*0.26 + 0.2*x = 0.07;
Solve for x.