You knew that this question is ridiculously easy. So, just to
make it harder, you decided not to let us see the picture, so
that we could not "examine the circuit".
The description is talking about a parallel circuit. The other
kind is a series circuit, and that one has no forks in the road.
Answer:
a) W_total = 8240 J
, b) W₁ / W₂ = 1.1
Explanation:
In this exercise you are asked to calculate the work that is defined by
W = F. dy
As the container is rising and the force is vertical the scalar product is reduced to the algebraic product.
W = F dy = F Δy
let's apply this formula to our case
a) Let's use Newton's second law to calculate the force in the first y = 5 m
F - W = m a
W = mg
F = m (a + g)
F = 80 (1 + 9.8)
F = 864 N
The work of this force we will call it W1
We look for the force for the final 5 m, since the speed is constant the force must be equal to the weight (a = 0)
F₂ - W = 0
F₂ = W
F₂ = 80 9.8
F₂ = 784 N
The work of this fura we will call them W2
The total work is
W_total = W₁ + W₂
W_total = (F + F₂) y
W_total = (864 + 784) 5
W_total = 8240 J
b) To find the relationship between work with relate (W1) and work with constant speed (W2), let's use
W₁ / W₂ = F y / F₂ y
W₁ / W₂ = 864/784
W₁ / W₂ = 1.1
Answer:
Potential difference though which the electron was accelerated is 
Explanation:
Given :
De Broglie wavelength , 
Plank's constant , 
Charge of electron , 
Mass of electron , m=9.11\times 10^{-31}\ kg.
We know , according to de broglie equation :

Now , we know potential energy applied on electron will be equal to its kinetic energy .
Therefore ,

Putting all values in above equation we get ,

Hence , this is the required solution.
Answer:
(a) k =
(b) τ =
∝
Explanation:
The moment of parallel pipe rotating about it's axis is given by the formula;
I =
---------------------------------1
(a) The kinetic energy of a parallel pipe is also given as;
k =
--------------------------------2
Putting equation 1 into equation 2, we have;
k = 
k =
(b) The angular momentum is given by the formula;
τ = Iw -----------------------3
Putting equation 1 into equation 3, we have
τ = 
But
τ = dτ/dt =
------------------4
where
dw/dt = angular acceleration =∝
Equation 4 becomes;
τ =
∝