In quantum mechanics, particularly the wave-particle theory, it states that light behaves like a wave or a particle. For the wave behavior, its movement is measured in wavelengths while the time for each wavelength is the frequency. For the particle behavior, according to Planck, the energy of the photon (light particle) is determined as
E = hc/wavelength, where h is the Planck's constant (<span>6.626 x 10-34 J-s per particle) and c is the speed of light ( 3 x 10^8m/s)
As you can see, the energy of the photon is INVERSELY PROPORTIONAL to the wavelength with the Planck's constant as the constant of proportionality.</span>
Answer:
0.83 m or 5.57 m
Explanation:
Destructive interference will occur when the distances from the speakers differ by 1/2 wavelength.
The length of 1 cycle of 72.4 Hz is ...
λ = v/f = (343 m/s)/(72.4 Hz) ≈ 4.738 m
So, the distance of the listener from speaker B is ...
3.2 m ± (4.738 m)/2 = {0.83 m, 5.57 m} . . . either of these distances
_____
The location could be at additional multiples of 4.738 m, but we think not. The sound intensity drops off with the square of the distance from the speaker, so identical sound waves from the speakers will sound quite different at different distances from the speakers. For best interference, the distances need to be as close to the same as possible. That will be at 3.2 m and 5.57 m.
_____
<em>Comment on the speed of sound</em>
We don't know what speed you are to use for the speed of sound. We have used 343 m/s. Some sources use 340 m/s, which will give a result different by 2 or 3 cm.
Answer:
the correct statement is the first
The law of conservation of mass indicates the same amount of carbon will be found in the reactants as in the products.
Explanation:
The law of conservation of energy establishes that the masses are not destroyed, they can only be transformed.
Therefore the mass of carbon in the reactants (CO2 and H2O) must be in the products (glucose and oxygen)
so the correct statement is the first
The law of conservation of mass indicates the same amount of carbon will be found in the reactants as in the products.