I could be wrong, but I'm pretty sure it's 144kg.
Answer: 8.1 x 10^24
Explanation:
I(t) = (0.6 A) e^(-t/6 hr)
I'll leave out units for neatness: I(t) = 0.6e^(-t/6)
If t is in seconds then since 1hr = 3600s: I(t) = 0.6e^(-t/(6 x 3600) ).
For neatness let k = 1/(6x3600) = 4.63x10^-5, then:
I(t) = 0.6e^(-kt)
Providing t is in seconds, total charge Q in coulombs is
Q= ∫ I(t).dt evaluated from t=0 to t=∞.
Q = ∫(0.6e^(-kt)
= (0.6/-k)e^(-kt) evaluated from t=0 to t=∞.
= -(0.6/k)[e^-∞ - e^-0]
= -0.6/k[0 - 1]
= 0.6/k
= 0.6/(4.63x10^-5)
= 12958 C
Since the magnitude of the charge on an electron = 1.6x10⁻¹⁹ C, the number of electrons is 12958/(1.6x10^-19) = 8.1x10^24 to two significant figures.
I believe the answer is #4. u can always ask google if u believe that's the wrong answer :)
Answer:
, 
Explanation:
The jet is flying at constant velocity: this means that its acceleration is zero, so the net force acting on the jet is also zero.
Therefore, we can write:

where
is the thrust force generated by each engine of the jet
is the drag force
Solving for Fd,

The velocity of the jet is

So, the rate at which the drag force does work (which is the power) is

and substituting

we find

Converting into horsepower,

The velocity of projectile has 2 components, horizontal component vcosθ and vertical component vsinθ, where v is the velocity of projection and θ is the angle between +ve X-axis and projectile motion.
In case 1, θ = 90⁰
So horizontal component is vcos90 = 0
Vertical component at maximum height = 0
So velocity at maximum height = 0 m/s
In case 2, θ = 45⁰
So horizontal component is 141cos45 = 100m/s
Vertical component at maximum height = 0
So velocity at maximum height = 100 m/s