answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nata [24]
2 years ago
10

The headlights of a car emit light of wavelength 400 nm and are separated by 1.2 m. The headlights are viewed by an observer who

se eye has an aperture of 4.0 mm. The observer can just distinguish the headlights as separate images. What is the distance between the observer and the headlights?A. 8 kmB. 10 kmC. 15 kmD. 20 km
Physics
2 answers:
densk [106]2 years ago
6 0

Answer:

The most correct option is;

B. 10 km

Explanation:

L = \frac{y \times d}{1.22 \times  \lambda} = \frac{1.2 \times 0.004}{1.22 \times  400 \times 10^{-9}} = 9836.066 \ km

Where:

y = Distance between the two headlights

d = Aperture of observers eye

λ = Wavelength of light

L = Distance between the observer and the headlight

Therefore, from the above solution, the distance between the observer and the headlights is 9386.066 km which is approximately 10 km.

Also we have

sinθ = y/L = 1.22 (λ/d)  

= 1.22 \times \frac{400 \times 10^{-9}}{0.004}

sinθ = 1.22×10⁻⁴ rad

lesantik [10]2 years ago
5 0

Answer:

L = 9836.1 m ≈ 10 km

Explanation:

Given:-

- The separation between head-lights, s = 1.2 m

- The wavelength of light emitted, λ = 400 nm

- The aperture of an eye, d = 4.0 mm

Find:-

What is the distance between the observer and the headlights?

Solution:-

- We will assume the observer is located in between two headlights and the distance between the observer an each headlight is same and equal to (L).

- We will apply the results of Young's split ( interference experiment ). Where the angle of separation between interference pattern form ( θ ). Also the angle of separation between observer and head light. is related to the wavelength and slit opening.

                        sin ( θ ) = 1.22*λ / d

- Determine the angle of separation θ :

                       θ = arc sin ( 1.22*(00*10^-9 / 0.004) )

                       θ = arc sin (0.000122)

                      θ =  0.000122 rads

- Using trigonometric ratios we can determine the distance between the headlights and the observer:

                      sin ( θ ) = s / L

                      sin ( 0.000122 ) = s / L

                      0.000122 = 1.2 / L

                      L = 1.2 / 0.000122

                      L = 9836.1 m ≈ 10 km

You might be interested in
A girl is shown at position A on a swing when the seat is directly below the support bar. The seat is then at height A as shown
MrRa [10]

Answer:

<u></u>

  • <u>1. The potential energy of the swing is the greatest at the position B.</u>

  • <u>2. As the swing moves from point B to point A, the kinetic energy is increasing.</u>

Explanation:

Even though the syntax of the text is not completely clear, likely because it accompanies a drawing that is not included, it results clear that the posittion A is where the seat is at the lowest position, and the position B is upper.

The gravitational <em>potential energy </em>is directly proportional to the height of the objects with respect to some reference altitude. Thus, when the seat is at the position A the swing has the smallest potential energy and when the seat is at the <em>position B the swing has the greatest potential energy.</em>

Regarding the forms of energy, as the swing moves from point B to point A, it is going downward, gaining kinetic energy (speed) at the expense of the potential energy (losing altitude). When the seat passes by the position A, the kinetic energy is maximum and the potential energy is miminum. Then the seat starts to gain altitude again, losing the kinetic energy and gaining potential energy, up to it gets to the other end,

7 0
2 years ago
Read 2 more answers
A steel cylinder at sea level contains air at a high pressure. Attached to the tank are two gauges, one that reads absolute pres
marishachu [46]

Answer:

C) The pressure reading stays the same.

Explanation:

3 0
2 years ago
Read 2 more answers
A 1.5 m cylinder of radius 1.1 cm is made of a complicated mixture materials. Its resistivity depends on the distance x from the
Elis [28]

Answer:

a)R = 171μΩ

b)E = 1.7 *10^{-4} V/m

c)R_{2} = 1.16 *10^{-4}Ω

here * stand for multiplication

Explanation:

length of cylinder = 1.5 m

radius of cylinder  =  1.1 cm

resistivity depends on the distance x from the left

p(x)=a+bx^2 ............(i)

using equation

R = \frac{pl}{a}

let dR is the resistance of thickness dx

dR =\frac{p(x)dx}{a}

where p(x) is resistivity  l is length

a is area

\int\limits^R_0 {dR}  =\frac{1}{\pi r^2} \int\limits^L_0 {(a+bx^2)} \, dx  \\.........................(2)

after integration

R = \frac{[aL+\frac{bL^3}{3}] }{\pi  r^2}  ...............(3)

it is given p(0) = a = 2.25 * 10 ^{-8}Ωm

p(L) = a + b(L)^2  = 8.5 * 10 ^{-8} Ωm

8.5 * 10 ^{-8} = 2.25 * 10^{-8}+b(1.5)^2\\

(here * stand for multiplication )

on solving we get

b = 2.78* 10^{-8} Ωm

put each value of a  and b and r value in equation 3rd we get

R = \frac{[aL+\frac{bL^3}{3}] }{\pi  r^2}

R = 1.71 * 10^{-4}Ω

R = 171μΩ

FOR (b)

for mid point  x = L/2

E = p(x)L

for x = L/2

p(L/2) = a+b(L/2)^2

for given current  I = 1.75 A

so electric field

 

E = \frac{[a+b(L/2)^2]I }{\pi  r^2}

by substitute the values

we get;

E = 1.7 *10^{-4} V/m

(here * stand for multiplication )

c ).

75 cm means length will be half

 that is   x =  L/2

integrate  the second equation with upper limit  L/2  

Let resistance is R_{1}

so after integration we get

R_{1}  =  \frac{[a(L/2) +(b/3)(L^3/8)]}{\pi r^2}

substitute the value of a , b and L we get

R_{1} = 5.47 * 10 ^{-5}Ω

for second half resistance

R_{2} =  R- R_{1}

R_{2}  = 1.7 *10^{-4} -5.47 *10^{-5}

R_{2} = 1.16 *10^{-4}Ω

(here * stand for multiplication )

5 0
2 years ago
(a) Calculate the absolute pressure at the bottom of a fresh- water lake at a depth of 27.5 m. Assume the density of the water i
ddd [48]

Answer:

a) P = 370.993\,kPa, b) F = 25.948\,kN

Explanation:

a) The absolute pressure at a depth of 27.5 meters is:

P = P_{atm} + P_{man}

P = 101.3\,kPa + \left(1000\,\frac{kg}{m^{3}}\right)\cdot \left(9.807\,\frac{m}{s^{2}} \right)\cdot (27.5\,m)\cdot \left(\frac{1\,kPa}{1000\,Pa} \right)

P = 370.993\,kPa

b) The force exerted by the water is:

F = (P - P_{atm})\cdot A

F = (370.993\,kPa-101.3\,kPa)\cdot \left(\frac{\pi}{4} \right)\cdot (0.35\,m)^{2}

F = 25.948\,kN

5 0
2 years ago
Read 2 more answers
Which of the following statements accurately describes the atmospheric patterns that influence local weather?
timurjin [86]

Answer: A

Explanation:

Well the high and lows effect the humidity the more humidity the more hot it is so the high brings higher temperatures.

4 0
1 year ago
Other questions:
  • Calculate the amount of energy produced in a nuclear reaction in which the mass defect is 0.187456 amu.
    13·2 answers
  • The number of significant figures on the measurement 0.050010 kg id
    6·1 answer
  • Which statements describe the book and the forces acting on it? Check all that apply. The forces are balanced. The forces are un
    5·2 answers
  • A positive point charge Q1 = 2.5 x 10-5 C is fixed at the origin of coordinates, and a negative point charge Q2 = -5.0 x 10-6 C
    7·1 answer
  • 89. An electron is moving in a straight line with a velocity of 4.0×105 m/s. It enters a region 5.0 cm long where it undergoes a
    14·1 answer
  • A passenger railroad car has a total of 8 wheels. Springs on each wheel compress--slightly--when the car is loaded. Ratings for
    12·1 answer
  • A weatherman carried an aneroid barometer from the ground floor to his office atop the Sears Tower in Chicago. On the level grou
    10·1 answer
  • A force pair is produced when a tennis racket strikes a tennis ball. Which of the following best explains why the tennis ball do
    8·1 answer
  • A tank contains 100 gal of water and 50 oz of salt.water containing a salt concentration of 1 4 (1 1 2 sin t) oz/gal flows into
    7·1 answer
  • a) Suppose that the current in the solenoid is I(t). Within the solenoid, but far from its ends, what is the magnetic field B(t)
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!