answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anni [7]
2 years ago
7

A girl is shown at position A on a swing when the seat is directly below the support bar. The seat is then at height A as shown

by a grey arrow and grey line. When she swings up and to the right to position B when the seat is at height B as shown by a grey arrow and grey line. At which position, A or B, is the potential energy of the swing the greatest? As the swing moves from point B to point A, which form of energy is increasing, kinetic or potential?
Physics
2 answers:
soldier1979 [14.2K]2 years ago
9 0

Answer:

1st one is B and 2nd one is kinetic i take the quiz

Explanation:

MrRa [10]2 years ago
7 0

Answer:

<u></u>

  • <u>1. The potential energy of the swing is the greatest at the position B.</u>

  • <u>2. As the swing moves from point B to point A, the kinetic energy is increasing.</u>

Explanation:

Even though the syntax of the text is not completely clear, likely because it accompanies a drawing that is not included, it results clear that the posittion A is where the seat is at the lowest position, and the position B is upper.

The gravitational <em>potential energy </em>is directly proportional to the height of the objects with respect to some reference altitude. Thus, when the seat is at the position A the swing has the smallest potential energy and when the seat is at the <em>position B the swing has the greatest potential energy.</em>

Regarding the forms of energy, as the swing moves from point B to point A, it is going downward, gaining kinetic energy (speed) at the expense of the potential energy (losing altitude). When the seat passes by the position A, the kinetic energy is maximum and the potential energy is miminum. Then the seat starts to gain altitude again, losing the kinetic energy and gaining potential energy, up to it gets to the other end,

You might be interested in
A point charge q1 = 4.50 nC is located on the x-axis at x = 1.95 m , and a second point charge q2 = -6.80 nC is on the y-axis at
Vinvika [58]

Answer:

Explanation:

One charge is situated at x = 1.95 m . Second charge is situated at y = 1.00 m

These two charges are situated outside sphere as it has radius of .365 m with center at origin. So charge inside sphere = zero.

Applying Gauss's theorem

Flux through spherical surface = charge inside sphere / ε₀

= 0 / ε₀

= 0 Ans .

3 0
2 years ago
A physics department has a Foucault pendulum, a long-period pendulum suspended from the ceiling. The pendulum has an electric ci
antoniya [11.8K]

Answer:

t=37 mins -> 2220sec

We want "T" which is the pendulum time constant

Using this equation

.5A=Ae^(-t/T)

The .5A is half the amplitude

Take ln of both sides to get ride of Ae

=ln(.5)=-2220/T

Now rearrange to = T

T=-2220/ln(.5) = 3202.78sec / 60 secs = 53.38 mins -> first part of the answer.

The second part is really easy. It took 37 mins to decay half way. meaning to decay another half of 50% which equals 25% it will take an additional 37 mins!

8 0
2 years ago
Conductance is directly proportional to the length of a conductor. true false user: resistance is inversely proportional to the
zlopas [31]
1) false

2) area of the conductor
7 0
2 years ago
Read 2 more answers
Determine the change in thermal energy of 100 g of copper (M = 63,5, Debye 348K) if it is cooled from
Setler [38]

Answer:

given,

mass of copper = 100 g

latent heat of liquid (He) = 2700 J/l

a) change in energy

Q = m Cp (T₂ - T₁)

Q = 0.1 × 376.812 × (300 - 4)

Q = 11153.63 J

He required

Q = m L

11153.63 = m × 2700

m = 4.13 kg

b) Q = m Cp (T₂ - T₁)

Q = 0.1 × 376.812 × (78 - 4)

Q = 2788.41 J

He required

Q = m L

2788.41 = m × 2700

m = 1.033 kg

c) Q = m Cp (T₂ - T₁)

Q = 0.1 × 376.812 × (20 - 4)

Q = 602.90 J

He required

Q = m L

602.9 = m × 2700

m =0.23 kg

8 0
2 years ago
Describe how electromagnetic radiation can ionise an atom. 2 marks
IRISSAK [1]

Answer:

Ionizing radiation is radiation with enough energy so that during an interaction with an atom, it can remove tightly bound electrons from the orbit of an atom, causing the atom to become charged or ionized. ... Forms of electromagnetic radiation.

(from google)

thank you :)

8 0
2 years ago
Other questions:
  • Juan was wearing a bright red shirt in a very dark room. What color did his shirt appear to the people with him in the room? A)
    6·2 answers
  • A pendulum of 50 cm long consists of small ball of 2kg starts swinging down from height of 45cm at rest. the ball swings down an
    5·1 answer
  • postal worker on a bicycle travels at an average speed of 4m/s for 3 minutes. Work out how far she travelled.
    7·2 answers
  • You wad up a piece of paper and throw it into the wastebasket. How far will
    13·2 answers
  • A 0.500-kg ball traveling horizontally on a frictionless surface approaches a very massive stone at 20.0 m/s perpendicular to wa
    5·1 answer
  • A metal sphere with radius R1 has a charge Q1. Take the electric potential to be zero at an infinite distance from the sphere.Ex
    5·1 answer
  • series RC circuit is built with a 15 kΩ resistor and a parallel-plate capacitor with 18-cm-diameter electrodes. A 18 V, 36 kHz s
    11·1 answer
  • When a switch is closed to complete a DC series RL circuit which has a large time constant, Group of answer choices the electric
    6·1 answer
  • A positively-charged particle is released near the positive plate of a parallel plate capacitor. a. Describe its path after it i
    11·1 answer
  • Suppose we have a radar dish that generates a strong signal that travels out to hit an asteroid 10^9 kilometres away.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!