<h2>
Option C is the correct answer.</h2>
Explanation:
We need to find how many calories is 1 BTU.
Given
1 BTU = 1054 J
1 calorie = 4.186 J
So we have
1 BTU = 4.186 x 251.79 J
1 BTU =251.79 calorie
1 BTU = 252 calorie.
Option C is the correct answer.
Answer:
we have to find out the critical resolved shear stress. As it it given in the question
Ф = 28.1°and the possible values for λ are 62.4°, 72.0° and 81.1°.
a) Slip will occur in the direction where cosФ cosλ are maximum. Cosine for all possible λ values are given as follows.
cos(62.4°) = 0.46
cos(72.0°) = 0.31
cos(81.1°) = 0.15
Thus, the slip direction is at the angle of 62.4° along the tensile axis.
b) now the critical resolved shear stress can be find out by the following equation.
τ
= σ
( cosФ cosλ)
now by putting values,
= (1.95MPa)[ cos(28.1) cos(62.4)] = 0.80 MPa (114 Psi) 7.23
<span>Depends on the precision you're working to.
proton mass ~ 1.00728 amu
neutron mass ~ 1.00866 amu
electron mass ~ electron mass = 0.000549 amu
Binding mass is:
mass of constituents - mass of atom
Eg for nitrogen:
(7*1.00728)-(7*1.00866)-(7*0.000549)
-14.003074 = 0.11235amu
Binding energy is:
E=mc^2 where c is the speed of light. Nuclear physics is usually done in MeV[1] where 1 amu is about 931.5MeV/c^2. So:
0.11235 * 931.5 = 104.6MeV
Binding energy per nucleon is total energy divided by number of nucleons. 104.6/14 = 7.47MeV
This is probably about right; it sounds like the right size!
Do the same thing for D/E/F and recheck using your numbers & you shouldn't go far wrong :)
1 - have you done this? MeV is Mega electron Volts, where one electronVolt (or eV) is the change in potential energy by moving one electron up a 1 volt potential. ie energy = charge * potential, so 1eV is about 1.6x10^-19J (the same number as the charge of an electron but in Joules).
It's a measure of energy, but by E=mc^2 you can swap between energy and mass using the c^2 factor. Most nuclear physicists report mass in units of MeV/c^2 - so you know that its rest mass energy is that number in MeV.</span>
Answer:
2046.37 kPa
Explanation:
Given:
Number of moles, n = 125
Temperature, T = 20° C = 20 + 273 = 293 K
Radius of the cylinder, r = 17 cm = 0.17 m
Height of the cylinder, h = 1.64 m
thus,
volume of the cylinder, V = πr²h
= π × 0.17² × 1.64
= 0.148 m³
Now,
From the ideal gas law
we have
PV = nRT
here,
P is the pressure
R is the ideal gas constant = 8.314 J / mol. K
thus,
P × 0.148 = 125 × 8.314 × 293
or
P × 0.148 = 304500.25
or
P = 2046372.64 Pa = 2046.37 kPa
Time taken by the water balloon to reach the bottom will be given as

here we know that


now by the above formula



now in the same time interval we can say the distance moved by it will be


so it will fall at a distance 15.7 m from its initial position