Answer:
The amount of heat required is 
Explanation:
From the question we are told that
The mass of water is 
The temperature of the water before drinking is 
The temperature of the body is 
Generally the amount of heat required to move the water from its former temperature to the body temperature is

Here
is the specific heat of water with value
So

=>
Generally the no of mole of sweat present mass of water is

Here
is the molar mass of sweat with value
=> 
=> 
Generally the heat required to vaporize the number of moles of the sweat is mathematically represented as

Here
is the latent heat of vaporization with value 
=> 
=> 
Generally the overall amount of heat energy required is

=> 
=> 
A cold acetic acid solution is used to wash the residue of
the reagent in preparation of an aldol condensation product after vacuum
filtration. The main reason in washing
with the acetic acid rinse is to neutralize any sodium hydroxide.
Answer:
Hello your question is incomplete attached below is the complete question
Answer : x ( acceleration of mass 4m ) = 
The top pulley rotates because it has to keep the center of mass of the system at equilibrium
Explanation:
Given data:
mass suspended = 4 meters
mass suspended at other end = 3 meters
first we have to express the kinetic and potential energy equations
The general kinetic energy of the system can be written as
T = 
T =
also the general potential energy can be expressed as
U = 
The Lagrangian of the problem can now be setup as

next we will take the Euler-Lagrange equation for the generalized equations :
Euler-Lagrange equation = 
solving the equations simultaneously
x ( acceleration of mass 4m ) = 
The top pulley rotates because it has to keep the center of mass of the system at equilibrium
Answer:

Explanation:
During the exchange of applied force, thermal energy is generated by the friction that exists between the ground and the tire.
Said force according to the statement is the reaction of half the force on the rear tire. In this way the normal force acted is,

The work done is given by the friction force and the distance traveled,

Where ![\mu_k [/ tex] is the coefficient of kinetic frictionN is the normal force previously found d is the distance traveled,Replacing,[tex]W_f = (0.80)(441)(0.42)](https://tex.z-dn.net/?f=%20%5Cmu_k%20%5B%2F%20tex%5D%20is%20the%20coefficient%20of%20kinetic%20friction%3C%2Fp%3E%3Cp%3EN%20is%20the%20normal%20force%20previously%20found%20d%20is%20the%20distance%20traveled%2C%3C%2Fp%3E%3Cp%3EReplacing%2C%3C%2Fp%3E%3Cp%3E%5Btex%5DW_f%20%3D%20%280.80%29%28441%29%280.42%29)
The thermal energy released through the work done is,
