answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tino4ka555 [31]
2 years ago
11

You are using a lightweight rope to pull a sled along level ground. The sled weighs 485 N, the coefficient of kinetic friction b

etween the sled and the ground is 0.200, the rope is at an angle of 12∘ above the horizontal, and you pull on the rope with a force of 125 N. Find the normal force that the ground exerts on the sled.
Physics
1 answer:
Bogdan [553]2 years ago
5 0

Answer:

N=459.01N

Explanation:

According to Newton's first law:

N+F_y-W=0

The component of the force on the y-axis can be obtained through the Pythagorean Theorem. This is because the components are the cathetus of a right triangle and its hypotenuse is the magnitude of the force:

sin12^\circ=\frac{F_y}{F}\\F_y=Fsin12^\circ

Replacing and solving for N:

N=W-Fsin12^\circ\\N=485N-(125N)sin12^\circ\\N=459.01N

You might be interested in
If I0 is the intensity of the unpolarized light incident on the first polarizer, and I1 and I2 denote the intensity of the light
e-lub [12.9K]
E or C 10 hope this helps
7 0
2 years ago
Janice is unsure about her future career path. She has grown up on her family farm, but she is also interested in medicine. Jani
Vika [28.1K]

Answer:

d not joining FRA and joining HOSA INSTEAD

3 0
2 years ago
Read 2 more answers
An astronaut weighs 8.00 × 102 newtons on the sur- face of Earth. What is the weight of the astronaut 6.37 × 106 meters above th
kolbaska11 [484]

Answer:

mg=200.4 N.

Explanation:

This problem can be solved using Newton's law of universal gravitation: F=G\frac{m_{1}m_{2}}{r^{2}},

where F is the gravitational force between two masses m_{1} and m_{2}, r is the distance between the masses (their center of mass), and G=6.674*10^{-11}(m^{3}kg^{-1}s^{-2}) is the gravitational constant.

We know the weight of the astronout on the surface, with this we can find his mass. Letting w_{s} be the weight on the surface:

w_{s}=mg,

mg=8*10^{2},

m=(8*10^{2})/g,

since we now that g=9.8m/s^{2} we get that the mass is

m=81.6kg.

Now we can use Newton's law of universal gravitation

F=G\frac{Mm}{r^{2}},  

where m is the mass of the astronaut and M is the mass of the earth. From Newton's second law we know that

F=ma,

in this case the acceleration is the gravity so

F=mg, (<u>becarefull, gravity at this point is no longer</u> 9.8m/s^{2} <u>because we are not in the surface anymore</u>)

and this get us to

mg=G\frac{Mm}{r^{2}}, where mg is his new weight.

We need to remember that the mass of the earth is M=5.972*10^{24}kg and its radius is 6.37*10^{6}m.

The total distance between the astronaut and the earth is

r=(6.37*10^{6}+6.37*10^{6})=2(6.37*10^{6})=12.74*10^{6} meters.

Now we can compute his weigh:

mg=G\frac{Mm}{r^{2}},

mg=(6.674*10^{-11})\frac{(5.972*10^{24})(81.6)}{(12.74*10^{6})^{2}},

mg=200.4 N.

5 0
2 years ago
A square block of steel with volume 10 cm3 and mass of 75 g is cut precisely in half. The density of the two smaller pieces is n
dem82 [27]
A. Density only depends on the substance. It doesn't matter whether you have a little chip of it or a supertanker full of it ... the density doesn't change.
4 0
2 years ago
Read 2 more answers
A team of astronauts is on a mission to land on and explore a large asteroid. In addition to collecting samples and performing e
Blizzard [7]
<h2>Answer: 117.626m/s</h2>

Explanation:

The escape velocity V_{esc} is given by the following equation:

V_{esc}=\sqrt{\frac{2GM}{R}}   (1)

Where:

G is the Gravitational Constant and its value is 6.674(10)^{-11}\frac{m^{3}}{kgs^{2}}

M  is the mass of the asteroid

R  is the radius of the asteroid

On the other hand, we know the density of the asteroid is \rho=3.84(10)^{8}g/m^{3} and its volume is V=2.17(10)^{12}m^{3}.

The density of a body is given by:

\rho=\frac{M}{V}  (2)

Finding M:

M=\rhoV=(3.84(10)^{8} g/m^{3})(2.17(10)^{12}m^{3})  (3)

M=8.33(10)^{20}g=8.33(10)^{17}kg  (4)  This is the mass of the spherical asteroid

In addition, we know the volume of a sphere is given by the following formula:

V=\frac{4}{3}\piR^{3}   (5)

Finding R:

R=\sqrt[3]{\frac{3V}{4\pi}}   (6)

R=\sqrt[3]{\frac{3(2.17(10)^{12}m^{3})}{4\pi}}   (7)

R=8031.38m   (8)  This is the radius of the asteroid

Now we have all the necessary elements to calculate the escape velocity from (1):

V_{esc}=\sqrt{\frac{2(6.674(10)^{-11}\frac{m^{3}}{kgs^{2}})(8.33(10)^{17}kg)}{8031.38m}}   (9)

Finally:

V_{esc}=117.626m/s This is the minimum initial speed the rocks need to be thrown in order for them never return back to the asteroid.

6 0
2 years ago
Other questions:
  • Bill has a mass of 85 kg and is skating west. He increases his speed from 3 m/s to 5 m/s by applying a force for 3 seconds. What
    11·1 answer
  • There are two different size spherical paintballs and the smaller one has a diameter of 5 cm and the larger one is 9 cm in diame
    13·1 answer
  • In a cyclotron, the orbital radius of protons with energy 300 keV is 16.0 cm . You are redesigning the cyclotron to be used inst
    15·2 answers
  • Water (cp = 4180 J/kg·K) is to be heated by solar-heated hot air (cp = 1010 J/kg·K) in a double-pipe counter-flow heat exchanger
    15·1 answer
  • A boy of mass 80 kg slides down a vertical pole, and a frictional force of 480 N acts on him. What is his acceleration as he sli
    5·1 answer
  • a)A concentration C(mol/L) varies with time (min) according to the equation C=3.00exp(−2.00t) a) What are the implicit units of
    7·1 answer
  • A shell is launched with a velocity of 100 m/s at an angle of 30.0° above horizontal from a point on a cliff 50.0 m above a leve
    13·1 answer
  • Una furgoneta circula por una carretera a 55km/h. Diez km atrás , un coche circula en el mismo sentido a 85km/h ¿ En cuanto tiem
    10·1 answer
  • Adam takes a bus on a school field trip. The bus route is split into the five legs listed in the table. Find the average velocit
    10·1 answer
  • A balloon tied up with a wooden piece is moving upward with velocity of 15m/s. At a height of 300m above the ground, the wooden
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!