To solve this problem it is necessary to apply Boyle's law in which it is specified that

Where,
and
are the initial pressure and volume values
and
are the final pressure volume values
The final pressure here is the atmosphere, then




Pressure at the water is given by,


Using Boyle equation we have,



Therefore the volume of the lungs at the surface is 5.9L
<h3>pressure = force / area</h3>
<h3>force = 84 N</h3><h3>pressure = 6 × 10 - 5 = 55 m2</h3>
<h3>pressure = 84 / 55</h3>
<h3>pressure = 1.53 pascals</h3>
hope that helps and please tell me if i am wrong :)
Answer:
v = 2.21 m/s
Explanation:
The foreman had released the box from rest at a height of 0.25 m above the ground.
We need to find the speed of the crate when it reaches the bottom of the ramp. Let v is the velocity at the bottom of the ramp. It can be calculated using conservation of energy as follows :

So, its velocity at the bottom of the ramp is 2.21 m/s.
The statement that most accurately describes mitosis simply is <span>that mitosis is a type of cell division in which one cell (the mother) divides to produce two new cells (the daughters) that are genetically identical to itself</span>. This is the most basic textbook definition, that is summary, of what the mitosis is.
Answer:

Explanation:
Mass of a hockey puck, m = 0.17 kg
Force exerted by the hockey puck, F' = 35 N
The force of friction, f = 2.7 N
We need to find the acceleration of the hockey puck.
Net force, F=F'-f
F=35-2.7
F=32.3 N
Now, using second law of motion,
F = ma
a is the acceleration of the hockey puck

So, the acceleration of the hockey puck is
.