Answer:
(a) k =
(b) τ =
∝
Explanation:
The moment of parallel pipe rotating about it's axis is given by the formula;
I =
---------------------------------1
(a) The kinetic energy of a parallel pipe is also given as;
k =
--------------------------------2
Putting equation 1 into equation 2, we have;
k = 
k =
(b) The angular momentum is given by the formula;
τ = Iw -----------------------3
Putting equation 1 into equation 3, we have
τ = 
But
τ = dτ/dt =
------------------4
where
dw/dt = angular acceleration =∝
Equation 4 becomes;
τ =
∝
Answer:
B.It is a satellite that collects data about rain and snow
C.Its orbit covers 90 percent of Earth’s surface
F.The sensors measure microwaves
Remember your kinematic equations for constant acceleration. One of the equations is

, where

= final position,

= initial position,

= initial velocity, t = time, and a = acceleration.
Your initial position is where you initially were before you braked. That means

= 100m. You final position is where you ended up after t seconds passed, so

= 350m. The time it took you to go from 100m to 350m was t = 8.3s. You initial velocity at the initial position before you braked was

= 60.0 m/s. Knowing these values, plug them into the equation and solve for a, your acceleration:
Your acceleration is approximately
.
Answer:
A=0.199
Explanation:
We are given that
Mass of spring=m=450 g=
Where 1 kg=1000 g
Frequency of oscillation=
Total energy of the oscillation=0.51 J
We have to find the amplitude of oscillations.
Energy of oscillator=
Where
=Angular frequency
A=Amplitude

Using the formula



Hence, the amplitude of oscillation=A=0.199
Answer: A. Greater than 384 Hz
Explanation:
The velocity of sound is directly related to the temperature rather it is directly proportional meaning if the temperature decreases the velocity decreases and if temperature increases the velocity increases.
Now, we are given that temperature has risen from 20°C to 25°C meaning it has increases. So it implies that velocity must also increase.
Also, the velocity for organ pipe is directly proportional to its frequency. Now if velocity increases frequency must also increase. In this case, the original frequency is 384 Hz. Now increasing the temperature resulted in increase in velocity and thus increase in frequency.
So option a is correct. i.e. now frequency will be greater than 384 Hz.