Hi!
Mechanical advantage is defined as the<em> ratio of force produced by an object to the force that is applied to it.</em>
In our case, this would be the ratio of the force applied by the claw hammer on the nail to the force Joel applies to the claw hammer, which is
160:40 or 4:1
So the mechanical advantage of the hammer is four.
Hope this helps!
Explanation:
Below is an attachment containing the solution.
<span>As it is descended from a vertical height h,
The lost Potential Energy = Mgh
The gained Kenetic Energy = (1/2)Mv^2; The rotational KE = (1/2)Jw^2
The angular speed w = speed/ Radius = v/R
So Rotational KE = (1/2)Jw^2 = (1/2)J(v/R)^2; J is moment of inertia
Now Mgh = (1/2)Mv^2 + (1/2)J(v/R)^2 => 2gh/v^2 = 1 + (J/MR^2)
As v = (5gh/4)^1/2, (J/MR^2) = 2gh/v^2 - 1 => (J/MR^2) = (8gh/5gh) - 1
so (J/MR^2) = 3/5 and therefore J = (3/5)MR^2.</span>
Answer:
Pressure is equal to the ratio of thrust to the area in contact. Upthrust is a force exerted by the fluids on an object placed in the fluid . Upthrust acts in upward direction.
Answer: C. The case on the inclined surface had the least decrease intotal mechanical energy.
Explanation:
First and foremost, it should be noted that the mechanical energy is the addition of the potential and the kinetic energy.
From the information given, it should be known that when the block is projected with the same speed v up an incline where is slides to a stop due to friction, the box will lose its kinetic energy but there'll be na increase in the potential energy as a result of the veritcal height. This then brings about an increase in the mechanical energy.
Therefore, the total mechanical energy of the block will decrease the least when the case on the inclined surface had the least decrease intotal mechanical energy.