answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mashutka [201]
2 years ago
10

The two structural members, one of which is in tension and the other in compression, exert the indicated forces on joint O. Dete

rmine the magnitude of the resultant R of the two forces and the angle θ which R makes with the positive x-axis. The angle θ is measured counterclockwise from the positive x-axis.
Physics
1 answer:
Inessa05 [86]2 years ago
6 0

Answer:

R = 3.606 KN, θ = 24°

Explanation:

Resolving the forces to the x-direction

Rx = 3cos60 + 2cos30

= 1.5 + 1.732 = 3.232 KN

Resolving the forces to the y-direction

Ry = -3sin60 + 2sin30

= -2.6 + 1 = -1.6 KN

Getting the resultant of the two forces

R = \sqrt{Rx^2 + Ry^2}

Substituting the values of Rx and Ry, we obtain

R = 3.606 KN

tanθ = Ry/Rx = | -1.6/3.232 |

Then we have θ = 24°

You might be interested in
A uniform Rectangular Parallelepiped of mass m and edges a, b, and c is rotating with the constant angular velocity ω around an
Sonbull [250]

Answer:

(a) k = \frac{Mw^{2} }{6} (a^{2} +b^{2} )

(b)  τ = \frac{M}{3} (a^{2} +b^{2} ) ∝

Explanation:

The moment of parallel pipe rotating about it's axis is given by the formula;

I = \frac{M}{3} (a^{2} +b^{2} )   ---------------------------------1

(a) The kinetic energy of a parallel pipe is also given as;

k =\frac{1}{2} Iw^{2} --------------------------------2

Putting equation 1 into equation 2, we have;

k = \frac{M}{6} (a^{2} +b^{2} )w^{2}

k = \frac{Mw^{2} }{6} (a^{2} +b^{2} )

(b) The angular momentum is given by the formula;

τ = Iw -----------------------3

Putting equation 1 into equation 3, we have

τ = \frac{Mw}{3} (a^{2} +b^{2} )

But

τ = dτ/dt = \frac{M}{3} (a^{2} +b^{2} )\frac{dw}{dt}   ------------------4

where

dw/dt = angular acceleration =∝

Equation 4 becomes;

τ = \frac{M}{3} (a^{2} +b^{2} ) ∝

8 0
2 years ago
Global Precipitation Measurement (GPM) is a tool scientists use to forecast weather. Which statements describe GPM? Select three
lyudmila [28]

Answer:

B.It is a satellite that collects data about rain and snow

C.Its orbit covers 90 percent of Earth’s surface

F.The sensors measure microwaves

5 0
2 years ago
When a car is 100 meters from its starting position traveling at 60.0 m/s., it starts braking and comes to a stop 350 meters fro
NISA [10]
Remember your kinematic equations for constant acceleration. One of the equations is x_{f} =  x_{i} +  v_{i}(t) + \frac{1}{2} at^{2}, where x_{f} = final position, x_{i} = initial position, v_{i} = initial velocity, t = time, and a = acceleration. 

Your initial position is where you initially were before you braked. That means x_{i} = 100m. You final position is where you ended up after t seconds passed, so x_{f} = 350m. The time it took you to go from 100m to 350m was t = 8.3s. You initial velocity at the initial position before you braked was v_{i} = 60.0 m/s. Knowing these values, plug them into the equation and solve for a, your acceleration:
350\:m = 100\:m + (60.0\:m/s)(8.3\:s) + \frac{1}{2} a(8.3\:s)^{2}\\
250\:m = (60.0\:m/s)(8.3\:s) + \frac{1}{2} a(8.3\:s)^{2}\\
250\:m = 498\:m +34.445\:s^{2}(a)\\
-248\:m = 34.445\:s^{2}(a)\\
a \approx -7.2 \: m/s^{2}

Your acceleration is approximately -7.2 \: m/s^{2}.
4 0
2 years ago
A 450g mass on a spring is oscillating at 1.2Hz. The totalenergy of the oscillation is 0.51J. What is the amplitude.
Volgvan

Answer:

A=0.199

Explanation:

We are given that  

Mass of spring=m=450 g==\frac{450}{1000}=0.45 kg

Where 1 kg=1000 g

Frequency of oscillation=\nu=1.2Hz

Total energy of the oscillation=0.51 J

We have to find the amplitude of oscillations.

Energy of oscillator=E=\frac{1}{2}m\omega^2A^2

Where \omega=2\pi\nu=Angular frequency

A=Amplitude

\pi=\frac{22}{7}

Using the formula

0.51=\frac{1}{2}\times 0.45(2\times \frac{22}{7}\times 1.2)^2A^2

A^2=\frac{2\times 0.51}{0.45\times (2\times \frac{22}{7}\times 1.2)^2}=0.0398

A=\sqrt{0.0398}=0.199

Hence, the amplitude of oscillation=A=0.199

4 0
2 years ago
An organ pipe is tuned to exactly 384 Hz when the temperature in the room is 20°C. Later, when the air has warmed up to 25°C, th
maksim [4K]

Answer: A. Greater than 384 Hz

Explanation:

The velocity of sound is directly related to the temperature rather it is directly proportional meaning if the temperature decreases the velocity decreases and if temperature increases the velocity increases.

Now, we are given that temperature has risen from 20°C to 25°C meaning it has increases. So it implies that velocity must also increase.

Also, the velocity for organ pipe is directly proportional to its frequency. Now if velocity increases frequency must also increase. In this case, the original frequency is 384 Hz. Now increasing the temperature resulted in increase in velocity and thus increase in frequency.

So option a is correct. i.e. now frequency will be greater than 384 Hz.

3 0
2 years ago
Other questions:
  • The sun produces 3.826 x 1026 Joules of energy every second as it combines smaller hydrogen atoms into larger helium atoms. What
    7·1 answer
  • If E1 = 13.0 V and E2 = 5.0 V , calculate the current I2 flowing in emf source E2.
    8·1 answer
  • Calculate the longest wavelength visible to the human eye. express the wavelength in nanometers to three significant figures.
    15·1 answer
  • Which of the following statements is correct? Which of the following statements is correct? The more a muscle shortens, the more
    5·1 answer
  • Please Help!!!
    8·2 answers
  • A cricket player catches the ball leaning towards to the ground,why?​
    8·1 answer
  • Mt. Asama, Japan, is an active volcano complex. In 2009, an eruption threw solid volcanic rocks that landed far from the crater.
    10·1 answer
  • The platform is rotating about the vertical axis such that at any instant its angular position is u = (4t3/2) rad, where t is in
    8·1 answer
  • Technician A says that the use of some RTV sealants to seal components on an engine can damage the oxygen sensor. Technician B s
    6·1 answer
  • Two long, parallel, current-carrying wires lie in an xy-plane. The first wire lies on the line y = 0.340 m and carries a current
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!