Answer:

Explanation:
The equation that relates heat Q with the temperature change
of a substance of mass <em>m </em>and specific heat <em>c </em>is
.
We want to calculate the final temperature <em>T, </em>so we have:

Which for our values means (in this case we do not need to convert the mass to Kg since <em>c</em> is given in g also and they cancel out, but we add
to our temperature in
to have it in
as it must be):

Answer:
W
Explanation:
= Temperature of the room = 22.0 °C = 22 + 273 = 295 K
= Temperature of the skin = 33.0 °C = 33 + 273 = 306 K
= Surface area = 1.50 m²
= emissivity = 0.97
= Stefan's constant = 5.67 x 10⁻⁸ Wm⁻² K⁻⁴
Rate of heat transfer is given as


W
Answer:
The total kinetic energy of both particles is 
Explanation:
Given that,
Kinetic energy of nucleus
Kinetic energy of proton 
Radius of proton 
We need to calculate the final potential energy
Using formula of final potential energy

Put the value into the formula


We need to calculate the initial energy of both the particles
Using formula of energy



We need to calculate the total kinetic energy of both particles
Using conservation of energy





Hence, The total kinetic energy of both particles is 
Answer:
Explanation:
It is required that the weight of Joe must prevent Simon from being pulled down . That means he is not slipping down but tends to be towed down . So in equilibrium , force of friction will act in upward direction on Simon.
Let in equilibrium , tension in rope be T
For balancing Joe
T = M g
For balancing Simon
friction + T = mgsinθ
μmgcosθ+T = mgsinθ
μmgcosθ+Mg = mgsinθ
M = (msinθ - μmcosθ)
M = m(sinθ - μcosθ)
Answer:
The tension in the string is quadrupled i.e. increased by a factor of 4.
Explanation:
The tension in the string is the centripetal force. This force is given by

m is the mass, v is the velocity and r is the radius.
It follows that
, provided m and r are constant.
When v is doubled, the new force,
, is

Hence, the tension in the string is quadrupled.