answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sonbull [250]
2 years ago
12

Water flowing through a cylindrical pipe suddenly comes to a section of pipe where the diameter decreases to 86% of its previous

value. If the speed of the water in the larger section of the pipe was what is its speed in this smaller section if the water behaves like an ideal incompressible fluid
Physics
1 answer:
Orlov [11]2 years ago
3 0

Answer:

Explanation:

The speed of the water in the large section of the pipe is not stated

so i will assume 36m/s

(if its not the said speed, input the figure of your speed and you get it right)

Continuity equation is applicable for ideal, incompressible liquids

Q the flux of water that is  Av with A the cross section area and v the velocity,

so,

A_1V_1=A_2V_2

A_{1}=\frac{\pi}{4}d_{1}^{2} \\\\ A_{2}=\frac{\pi}{4}d_{2}^{2}

the diameter decreases 86% so

d_2 = 0.86d_1

v_{2}=\frac{\frac{\pi}{4}d_{1}^{2}v_{1}}{\frac{\pi}{4}d_{2}^{2}}\\\\=\frac{\cancel{\frac{\pi}{4}d_{1}^{2}}v_{1}}{\cancel{\frac{\pi}{4}}(0.86\cancel{d_{1}})^{2}}\\\\\approx1.35v_{1} \\\\v_{2}\approx(1.35)(38)\\\\\approx48.6\,\frac{m}{s}

Thus, speed in smaller section is 48.6 m/s

You might be interested in
If a spear is thrown at a fish swimming in a lake, it will often miss the fish completely. Why does this happen?
andreev551 [17]
C. refraction of light between the air and water causes the fish to appear in a different place 

3 0
2 years ago
Read 2 more answers
You are working on a laboratory device that includes a small sphere with a large electric charge Q. Because of this charged sphe
madam [21]

Answer:

the only effect it has is to create more induced charge at the closest points, but the net face remains zero, so it has no effect on the flow.

Explanation:

We can answer this exercise using Gauss's law

      Ф = ∫ e . dA = q_{int} / ε₀

field flow is directly proportionate to the charge found inside it, therefore if we place a Gaussian surface outside the plastic spherical shell.  the flow must be zero since the charge of the sphere is equal  induced in the shell, for which the net charge is zero. we see with this analysis that this shell meets the requirement to block the elective field

From the same Gaussian law it follows that if the sphere is not in the center, the only effect it has is to create more induced charge at the closest points, but the net face remains zero, so it has no effect on the flow , so no matter where the sphere is, the total induced charge is always equal to the charge on the sphere.

5 0
2 years ago
A proton and an electron are held in place on the x axis. The proton is at x = -d, while the electron is at x = +d. They are rel
Over [174]
The protons and electrons are held in place on the x axis.
The proton is at x = -d and the electron is at x = +d. They are released at the same time and the only force that affects movement is the electrostatic force that is applied on both subatomic particles. According to Newton's third law, the force Fpe exerted on protons by the electron is opposite in magnitude and direction to the force Fep exerted on the electron by the proton. That is, Fpe = - Fep. According to Newton's second law, this equation can be written as
                               Mp * ap = -Me * ae
where Mp and Me are the masses, and ap and ae are the accelerations of the proton and the electron, respectively. Since the mass of the electron is much smaller than the mass of the proton, in order for the equation above to hold, the acceleration of the electron at that moment must be considerably larger than the acceleration of the proton at that moment. Since electrons have much greater acceleration than protons, they achieve a faster rate than protons and therefore first reach the origin.
6 0
2 years ago
A 1-m-long monopole car radio antenna operates in the AM frequency of 1.5 MHz. How muchcurrent is required to transmit 4 W of po
Zanzabum

Answer:

The current needed to transmit Power of 4 W is 28.47 A

Solution:

As per the question:

Length of the antenna, L_{a} = 1 m

Frequency, \vartheta = 1.5 MHz = 1.5\times 10^{6} Hz

Power transmitted, P_{t} = 4 W

Now,

For a monopole antenna:

\lambda_{a} = \frac{c}{\vartheta}

where

\lambda_{a} = wavelength transmitted by the antenna

c = speed of light in vacuum

\lambda_{a} = \frac{3\times 10^{8}}{1.5\times 10^{6}} = 200 m

Now,

Since, the value of \lambda_{a} >> L_{a} thus the monopole is a Hertian monopole.

The resistance is calculated as:

R = \frac{1}{2}(\frac{dL_{a}}{\lambda_{a}})^{2}\times 80\pi^{2}

R = \frac{1}{2}(\frac{1}{200)^{2}\times 80\pi^{2} = 9.869\times 10^{- 3} = 9.869 m\Omega

P_{radiated} = P_{t}

P_{radiated} = \frac{R}{I^{2}}

Now, the current I is given by:

I = \sqrt{\frac{2P_{t}}{R}} = \sqrt{\frac{2\times 4}{9.869\times 10^{- 3}}} = 28.47 A

5 0
2 years ago
Suppose you wanted to hold up an electron against the force of gravity by the attraction of a fixed proton some distance above i
SCORPION-xisa [38]

Answer:

The value is  r =  5.077 \  m

Explanation:

From the question we are told that

   The  Coulomb constant is  k =  9.0 *10^{9} \  N\cdot  m^2  /C^2

   The  charge on the electron/proton  is  e =  1.6*10^{-19} \  C

    The  mass of proton m_{proton} =  1.67*10^{-27} \  kg

    The  mass of  electron is  m_{electron } =  9.11 *10^{-31} \ kg

Generally for the electron to be held up by the force gravity

   Then    

       Electric force on the electron  =  The  gravitational Force

i.e  

            m_{electron} *  g  = \frac{ k *  e^2  }{r^2 }

         \frac{9*10^9 *  (1.60 *10^{-19})^2  }{r^2 }  =     9.11 *10^{-31 }  *  9.81

         r =  \sqrt{25.78}

         r =  5.077  \  m

7 0
2 years ago
Other questions:
  • What is a disadvantage of using moving water to produce electricity
    14·1 answer
  • Using the periodic table entry below, how many neutrons does the most common isotope of hydrogen have?
    12·2 answers
  • Not too long ago houses were protected from excessive currents by fuses rather than circuit breakers. sometimes a fuse blew out
    9·1 answer
  • A cat accelerates from rest to 10m/s when it sees a dog. This takes 2 seconds. What was the acceleration of the cat
    11·2 answers
  • A girl rolls a ball up an incline and allows it to re- turn to her. For the angle and ball involved, the acceleration of the bal
    14·1 answer
  • In this part of the experiment, you will be changing the speed of the bottle by dropping if from different heights. You will use
    6·2 answers
  • Which situation describes the highest rate of power?
    10·1 answer
  • If an otherwise empty pressure cooker is filled with air of room temperature and then placed on a hot stove, what would be the m
    10·1 answer
  • A horizontal spring with spring constant 750 N/m is attached to a wall. An athlete presses against the free end of the spring, c
    6·2 answers
  • A 0.111 kg hockey puck moving at 55 m/s is caught by a 80 kg goalie at rest. With what speed does the goalie slide on the (frict
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!