Answer:

Explanation:
Given:
Initial velocity of the vehicle, 
distance between the car and the tree, 
time taken to respond to the situation, 
acceleration of the car after braking, 
Using equation of motion:
..............(1)
where:
final velocity of the car when it hits the tree
initial velocity of the car when the tree falls
acceleration after the brakes are applied
distance between the tree and the car after the brakes are applied.

Now for this situation the eq. (1) becomes:
(negative sign is for the deceleration after the brake is applied to the car.)
Answer:
f3 = 102 Hz
Explanation:
To find the frequency of the sound produced by the pipe you use the following formula:

n: number of the harmonic = 3
vs: speed of sound = 340 m/s
L: length of the pipe = 2.5 m
You replace the values of n, L and vs in order to calculate the frequency:

hence, the frequency of the third overtone is 102 Hz
Based on the direction of propagation compared to direction of vibration, waves are classified into:
1- Transverse waves: The direction of propagation of the wave is perpendicular to the direction of vibration of the medium particles.
2- Longitudinal waves: The direction of propagation of the wave is the same as the direction of vibration of the medium particles.
For the question we have here, since the direction of the wave is the same as the direction of vibration of particles, therefore, this wave is a longitudinal wave
Answer:
<h2>jeusYgwyhedswusjsj</h2>
Explanation:
sjauajshsu<em>y</em><em>e</em><em>u</em><em>e</em><em>u</em><em>e</em><em>h</em><em>e</em><em>y</em><em>s</em><em>b</em><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em /><em />