Hi!
Mechanical advantage is defined as the<em> ratio of force produced by an object to the force that is applied to it.</em>
In our case, this would be the ratio of the force applied by the claw hammer on the nail to the force Joel applies to the claw hammer, which is
160:40 or 4:1
So the mechanical advantage of the hammer is four.
Hope this helps!
Complete Question
The complete question is shown on the first uploaded image
Answer:
The angle between shuttle's velocity and the Earth's field is 
Explanation:
From the question we are told that
The length of eire let out is 
The emf generated is 
The earth magnetic field is 
The speed of the shuttle and tether is 
The emf generated is mathematically represented as

making
the subject of the formula
![\theta = sin ^{-1}[ \frac{\epsilon}{L * B *v} ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20%20%20sin%20%5E%7B-1%7D%5B%20%5Cfrac%7B%5Cepsilon%7D%7BL%20%20%2A%20B%20%20%2Av%7D%20%5D)
substituting values
![\theta = sin ^{-1}[ \frac{40}{250 * (5*10^{-5}) *(7.80 *10^{3})} ]](https://tex.z-dn.net/?f=%5Ctheta%20%3D%20%20%20sin%20%5E%7B-1%7D%5B%20%5Cfrac%7B40%7D%7B250%20%20%2A%20%285%2A10%5E%7B-5%7D%29%20%20%2A%287.80%20%2A10%5E%7B3%7D%29%7D%20%5D)

<span>By algebra, d = [(v_f^2) - (v_i^2)]/2a.
Thus, d = [(0^2)-(15^2)]/(2*-7)
d = [0-(225)]/(-14)
d = 225/14
d = 16.0714 m
With 2 significant figures in the problem, the car travels 16 meters during deceleration.</span>
E = (1/2)CV²
1 = (1/2)*(2*10⁻⁶)V²
10⁶ = V²
1000 = V
You should charge it to 1000 volts to store 1.0 J of energy.
The thermal energy is where the work of friction comes from. That is what stops it eventually. In this case a counter force of 10N is applied over the distance of 30.0m. The energy is given by Force*Distance. Here this is 300J. This friction work is the thermal energy.