It can be calculated using Boyle's Law. A.
<span>f2 = f0/4
The gravity from the planet can be modeled as a point source at the center of the planet with all of the planet's mass concentrated at that point. So the initial condition for f0 has the satellite at a distance of 2r, where r equals the planet's radius.
The expression for the force of gravity is
F = G*m1*m2/r^2
where
F = Force
G = Gravitational constant
m1,m2 = masses involved
r = distance between center of masses.
Now for f2, the satellite has an altitude of 3r and when you add in the planet's radius, the distance from the center of the planet is now 4r. When you compare that to the original distance of 2r, that will show you that the satellite is now twice as far from the center of the planet as it was when it started. So let's compare the gravitational attraction, before and after.
f0 = G*m1*m2/r^2
f2 = G*m1*m2/(2r)^2
f2/f0 = (G*m1*m2/(2r)^2) / (G*m1*m2/r^2)
The Gm m1, and m2 terms cancel, so
f2/f0 = (1/(2r)^2) / (1/r^2)
f2/f0 = (1/4r^2) / (1/r^2)
And the r^2 terms cancel, so
f2/f0 = (1/4) / (1/1)
f2/f0 = (1/4) / 1
f2/f0 = 1/4
f2 = f0*1/4
f2 = f0/4
So the gravitational force on the satellite after tripling it's altitude is one fourth the original force.</span>
The problem statement is simply asking us to convert units. We convert from units of ft^3 to units of m^3. To do this, we need a conversion factor. For this case, we use 1 m is equal to 3.28084 ft. We do as follows:
5.0 ft^3 ( 1 m / 3.28084 ft )^3 = 0.1416 m^3

The ball is against the vector of gravity. Then, the gravity will be negative.

The ball will stop in the air after approx. 4.72 seconds. And will take the same time to hit the ground.
It will stay approx. 9.44 seconds in the air.
Answer:
number of electrons = 2.18*10^18 e
Explanation:
In order to calculate the number of electrons that move trough the second wire, you take into account one of the Kirchoff's laws. All the current that goes inside the junction, has to go out the junction.
Then, if you assume that the current of the wire 1 and 3 go inside the junction, then, all this current have to go out trough the second junction:
(1)
i1 = 0.40 A
i2 = 0.75 A
you solve the equation i3 from the equation (1):

Next, you take into account that 1A = 1C/s = 6.24*10^18
Then, you have:

The number of electrons that trough the wire 3 is 2.18*10^18 e/s