Refer to the diagram shown below.
Define unit vectors along the x and y axes as respectively

Then the three successive displacements, written in component form, are respectively

The total displacement for the first leg of the trip is

Answer:

or (-0.6, 0.8)
Given:
rod of circular cross section is subjected to uniaxial tension.
Length, L=1500 mm
radius, r = 10 mm
E=2*10^5 N/mm^2
Force, F=20 kN = 20,000 N
[note: newton (unit) in abbreviation is written in upper case, as in N ]
From given above, area of cross section = π r^2 = 100 π =314 mm^2
(i) Stress,
σ
=force/area
= 20000 N / 314 mm^2
= 6366.2 N/mm^2
= 6370 N/mm^2 (to 3 significant figures)
(ii) Strain
ε
= ratio of extension / original length
= σ / E
= 6366.2 /(2*10^5)
= 0.03183
= 0.0318 (to three significant figures)
(iii) elongation
= ε * L
= 0.03183*1500 mm
= 47.746 mm
= 47.7 mm (to three significant figures)
Explanation:
Below is an attachment containing the solution.
They have different accelerations because of their masses. According to Newton's Second Law, an objects acceleration is inversely proportional to its mass. Therefore the object with the larger mass, in this case the gun, will have a smaller acceleration. In the same way, the less massive object, being the bullet, will have a higher acceleration.
Hope this helps :)
Answer:
D. loss of volatiles to the atmosphere
Explanation:
The name magma designates matter in a semi-fluid state - resulting from the fusion of silicates containing dispersed solid gases and minerals and other compounds that make up the rocks, at temperatures between 700 and 1200 ° C - that forms the region beneath the crust. land. When it is inside the earth it is specifically named magma and lava when it is ejected to the surface
There are three systems by which magma can be produced on earth:
<u>
Temperature</u> rise by concentration of r<u>adioactive elements or by friction of lithospheric plates</u>.
<u>
Pressure decrease,</u> since the melting point decreases.
Adding <u>water</u> A rock begins to melt earlier if it contains water because the –OH groups effectively break the Si-O bonds.
A rock is formed by a set of minerals, each of which has a characteristic melting point so a rock does not have a single melting point but a temperature range in which the rock melts into parts, leaving others solid parts. Between the point at which a solid rock begins to melt and the melting end (liquid point) the rock is partially molten.
The rise of magmas depends on their physical-chemical conditions (viscosity, density, volatile element content), on the tectonic peculiarities of the region where they are found and on the rocks to be traversed. Acid magmas are light and viscous, rise easily and cause large deposits. The basic magmas, of greater density, are less viscous and ascend with greater difficulty than the previous ones.