Answer
given,


mass of book = 0.305 Kg
so, from the diagram attached below




computing horizontal component




θ = 62.35°
We can first calculate the net force using the given information.
By Newton's second law, F(net) = ma:
F(net) = 25 * 4.3 = 107.5
We can now calculate the frictional force, f, which is working against the applied force, F(app) (this is why the net force is a bit lower):
f = F(net) - F(app) = 150 - 107.5 = 42.5 N
Now we can calculate the coefficient of friction, u, using the normal force, F(N):
f = uF(n) --> u = f/F(N)
u = 42.5/[25(9.8)]
u = 0.17
Answer
Hi,
correct answer is {D} 3.5 m/s²
Explanation
Acceleration is the rate of change of velocity with time. Acceleration can occur when a moving body is speeding up, slowing down or changing direction.
Acceleration is calculated by the equation =change in velocity/change in time
a= {velocity final-velocity initial}/(change in time)
a=v-u/Δt
The units for acceleration is meters per second square m/s²
In this example, initial velocity =2.0m/s⇒u
Final velocity=44.0m/s⇒v
Time taken for change in velocity=12 s⇒Δt
a= (44-2)/12 = 42/12
3.5 m/s²
Best Wishes!
Answer:
F = - 50 N
Hence, the magnitude of resultant force is 50 N and its direction is leftwards.
Explanation:
The magnitude of the resultant force is always equal to the sum of all forces. While, the direction of resultant force will be equal to the direction of the force with greater magnitude:

considering right direction to be positive:
F₁ = Force applied on right rope = 150 N
F₂ = Force applied on left rope = 200 N
Therefore, the resultant force can be found by using these values in equation:

<u>F = - 50 N</u>
<u>Hence, the magnitude of resultant force is 50 N and its direction is leftwards.</u>