Answer:
4.41 × 10¹² J, 2.72 × 10³ m³, 0.907 × 10 ⁻³ m
Explanation:
Gravitational potential energy = mgh
where m is mass in kg, g is acceleration due to gravity in m/s², and h is the distance from the base of the dam.
mass of the surface water = density of water × volume of water × 1 m = 1000 kg / m³ × 3.0 × 10⁶ m² × 1 m = 3 × 10⁹ kg
Gravitational potential energy = 3 × 10⁹ kg × 9.81 m/s² × 150 m = 4.41 × 10¹² J
b)what volume of water must pass through the dam to produce 1000 kw-hrs
1 000 kw-hr = 3.6 × 10 ⁹ J
the dam has mechanical energy conversion of 90% to electrical energy
Gravitational potential energy needed = 3.6 × 10 ⁹ J / 0.9 = 4 × 10⁹ J
mass of water needed = Energy required / g h = 4 × 10⁹ J / (9.81 m/s² × 150 m) = 2.718 × 10 ⁶ kg
density = mass / volume
volume = mass / density = 2.718 × 10 ⁶ kg / (1000 kg/ m³) = 2.72 × 10³ m³
the distance the level of the water in the lake fell = volume / area = 2.72 × 10³ m³ / (3.0×10⁶ m²) = 0.907 × 10 ⁻³ m