answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Keith_Richards [23]
2 years ago
15

A siphon pumps water from a large reservoir to a lower tank that is initially empty. The tank also has a rounded orifice 20 ft b

elow the reservoir surface where the water leaves the tank. Both the siphon and the orifice diameters are 2 in. Ignoring frictional losses, determine to what height the water will rise in the tank at equilibrium
Physics
1 answer:
trasher [3.6K]2 years ago
3 0

Answer:

height of the water rise in tank is 10ft

Explanation:

Apply the bernoulli's equation between the reservoir surface (1) and siphon exit (2)

\frac{P_1}{pg} + \frac{V^2_1}{2g} + z_1= \frac{P_2}{pg} + \frac{V_2^2}{2g} +z_2

\frac{P_1}{pg} + \frac{V^2_1}{2g} +( z_1-z_2)= \frac{P_2}{pg} + \frac{V_2^2}{2g}-------(1)

substitute P_a_t_m for P_1, (P_a_t_m +pgh) for P_2

0ft/s for V₁, 20ft for (z₁ - z₂) and 32.2ft/s² for g in eqn (1)

\frac{P_1}{pg} + \frac{V^2_1}{2g} +( z_1-z_2)= \frac{P_2}{pg} + \frac{V_2^2}{2g}

\frac{P_1}{pg} + \frac{0^2_1}{2g} +( 20)= \frac{(P_a_t_m+pgh)}{pg} +\frac{V^2_2}{2\times32.2} \\\\V_2 = \sqrt{64.4(20-h)}

Applying bernoulli's equation between tank surface (3) and orifice exit (4)

\frac{P_3}{pg} + \frac{V^2_3}{2g} + z_3= \frac{P_4}{pg} + \frac{V_4^2}{2g} +z_4

substitute

P_a_t_m for P_3, P_a_t_m for P_4

0ft/s for V₃, h for z₃, 0ft for z₄, 32,2ft/s² for g

\frac{P_a_t_m}{pg} + \frac{0^2}{2g} +h=\frac{P_a_t_m}{pg} + \frac{V_4^2}{2\times32.2} +0\\\\V_4 =\sqrt{64.4h}

At equillibrium Fow rate at point 2 is equal to flow rate at point 4

Q₂ = Q₄

A₂V₂ = A₃V₃

The diameter of the orifice and the siphon are equal , hence there area should be the same

substitute A₂ for A₃

\sqrt{64.4(20-h)} for V₂

\sqrt{64.4h} for V₄

A₂V₂ = A₃V₃

A_2\sqrt{64.4(20-h)} = A_2\sqrt{64.4h}\\\\20-h=h\\\\h= 10ft

Therefore ,height of the water rise in tank is 10ft

You might be interested in
Determine the length of a copper wire that has a resistance of 0.172 ? and cross-sectional area of 7.85 × 10-5 m2. The resistivi
KonstantinChe [14]

Answer:

Length of copper wire, l = 785 meters

Explanation:

Given that,

Resistance of the copper wire, R = 0.172 ohms

Area of cross section, A=7.85\times 10^{-5}\ m^2

Resistivity of copper, \rho=1.72\times 10^{-8}\ \Omega-m

The resistance of a wire is given by :

R=\rho\dfrac{l}{A}

l=\dfrac{RA}{\rho}

l=\dfrac{0.172\ \Omega\times 7.85\times 10^{-5}\ m^2}{1.72\times 10^{-8}\ \Omega-m}

l = 785 meters

So, the length of the copper wire is 785 meters. Hence, this is the required solution.

8 0
2 years ago
In the metric system, the appropriate unit for weight is the _____. gram newton newton/cm2 gram/cm3
Archy [21]

Answer:

Newton

Explanation:

The earth attracts every body towards its centre. The force with which the earth attracts any body towards its centre, is called its weight.

It is a vector quantity.

It always acts towards the centre of earth.

The SI unit of Newton.

4 0
2 years ago
The rotational speeds of four generators are listed in RPM (revolutions per minute). Arrange the generators in order based on th
artcher [175]

with the same generator, so the only factor for producing the slectric field is only the speed. The faster the rotational speed of the generator the greater it produce electric field. So the sequence is 3000 rpm < 3200 rpm < 3400 rpm < 3600 rpm

4 0
2 years ago
Read 2 more answers
What is the mass of an object that creates 33,750 joules of energy by traveling at 30 m/sec?
nikklg [1K]
The Energy is Kinetic Energy.

Kinetic Energy = 1/2*mv²,  Where m is mass in kg, v is velocity in m/s

Energy is 33750 Juoles,  v = 30m/s

1/2*mv² = E

1/2*m*30² = 33750

m = (2*33750) / (30²)     Using a calculator

m = 75 kg

Mass of object is 75 kg.
5 0
2 years ago
Read 2 more answers
Li is riding her bicycle at 8.0 m/s. She slows down to 4.0 m/s. Her change in velocity is m/s. If Li takes 2 seconds to make thi
forsale [732]
You will have to use this formula:
v = vo + a \times t

Final Velocity (V) = 4m/s
Initial Velocity (Vo) = 8m/s
Acceleration (a) = ? m/s^2
Time (t) = 2 secs

Then:

-> 4 = 8 + a x 2
-> 4 - 8 = 2a
-> -4 = 2a
-> a = -4/2
-> a = -2 m/s^2

Ps: It's value is negative because the she was in retrograde motion.

Answer: Her acceleration is -2 m/s^2.
4 0
2 years ago
Read 2 more answers
Other questions:
  • A 1938 nickel has a diameter of 21.21 mm, a thickness of 1.95 mm, and weighs 0.04905 N. What is its density?
    13·1 answer
  • Find an expression for the acceleration a of the red block after it is released. use mr for the mass of the red block, mg for th
    6·2 answers
  • What force must be exerted on the master cylinder of a hydraulic lift to support the weight of a 2000-kg car (a large car) resti
    8·1 answer
  • As you know, loudspeakers are used for communication at sporting events, and in schools or supermarkets. Research loudspeakers o
    5·1 answer
  • A ladder placed up against a wall is sliding down. The distance between the top of the ladder and the foot of the wall is decrea
    6·1 answer
  • A student throws a softball horizontally from a dorm window 15.0 m above the ground. Another student standing 10.0 m away catche
    11·1 answer
  • Assume that a person bouncing a ball represents a closed system. Which statement best describes how the amounts of the ball's po
    8·1 answer
  • A force pair is produced when a tennis racket strikes a tennis ball. Which of the following best explains why the tennis ball do
    8·1 answer
  • You are standing in a boat. Which of the following strategies will make the boat start moving? Check all that apply.
    13·2 answers
  • A small rock is thrown straight up with initial speed v0 from the edge of the roof of a building with height H. The rock travels
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!