Answer:
It is a superordinate goal because both teams could have helped with the task.
Explanation:
If both teams pushed then they could have made it happened
Answer:
This value is less than the maximum tension of 500 lbs, making it safe for man to go to the tip flap
Explanation:
We must work on this problem using the rotational equilibrium equations and then they compared the tension values that the cable supports.
Let's start with fixing a reference system on the hinge of the flag, we take as positive the anti-clockwise turn
They indicate the weight of the pole W₁ = 120 lb and a length of L = 9 ft, the weight of the man W₂ = 150, we assume that the cable is at the tip of the pole
-
L + W₂ L + W₁ L / 2 = 0
T_{y} = W₂ + W₁ / 2
T_{y} = 120 + 150/2
T_{y} = 195 lb
we use trigonometry to find the cable tension
sin 30 = T_{y} / T
T = T_{y} / sin 30
T = 195 / sin 30
T = 390 lb
This value is less than the maximum tension of 500 lbs, making it safe for man to go to the tip flap
T < 500 lb
Kinetic energy is calculated through the equation,
KE = 0.5mv²
At initial conditions,
m₁: KE = 0.5(0.28 kg)(0.75 m/s)² = 0.07875 J
m₂ : KE = 0.5(0.45 kg)(0 m/s)² = 0 J
Due to the momentum balance,
m₁v₁ + m₂v₂ = (m₁ + m₂)(V)
Substituting the known values,
(0.29 kg)(0.75 m/s) + (0.43 kg)(0 m/s) = (0.28 kg + 0.43 kg)(V)
V = 0.2977 m/s
The kinetic energy is,
KE = (0.5)(0.28 kg + 0.43 kg)(0.2977 m/s)²
KE = 0.03146 J
The difference between the kinetic energies is 0.0473 J.
Answer:
Explanation:
Small grains are negatively charged by the wind while big grains is positively charged and remains at the ground . This process creates an electric field due to the presence of oppositely charged particles.
When ever electric field exists it is directed from a positive charge to a negative charge so the here electric field is towards an upwards direction.
Answer:
i(t) = (E/R)[1 - exp(-Rt/L)]
Explanation:
E−vR−vL=0
E− iR− Ldi/dt = 0
E− iR = Ldi/dt
Separating te variables,
dt/L = di/(E - iR)
Let x = E - iR, so dx = -Rdi and di = -dx/R substituting for x and di we have
dt/L = -dx/Rx
-Rdt/L = dx/x
interating both sides, we have
∫-Rdt/L = ∫dx/x
-Rt/L + C = ㏑x
x = exp(-Rt/L + C)
x = exp(-Rt/L)exp(C) A = exp(C) we have
x = Aexp(-Rt/L) Substituting x = E - iR we have
E - iR = Aexp(-Rt/L) when t = 0, i(0) = 0. So
E - i(0)R = Aexp(-R×0/L)
E - 0 = Aexp(0) = A × 1
E = A
So,
E - i(t)R = Eexp(-Rt/L)
i(t)R = E - Eexp(-Rt/L)
i(t)R = E(1 - exp(-Rt/L))
i(t) = (E/R)(1 - exp(-Rt/L))