For this problem, we use the conservation of momentum as a solution. Since momentum is mass times velocity, then,
m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'
where
v₁ and v₂ are initial velocities of cart A and B, respectively
v₁' and v₂' are final velocities of cart A and B, respectively
m₁ and m₂ are masses of cart A and B, respectively
(7 kg)(0 m/s) + (3 kg)(0 m/s) = (7 kg)(v₁') + (3 kg)(6 m/s)
Solving for v₁',
v₁' = -2.57 m/s
<em>Therefore, the speed of cart A is at 2.57 m/s at the direction opposite of cart B.</em>
Answer: Increase in wave frequency
Explanation:
When we talk about acoustics we are dealing with sound waves, and one of their main components along with the velocity and wavelength is the <u>frequency.</u>
In this sense, the frequency of any wave refers to how fast (or slow) a wave oscillates. For example, in the especific case of sound waves when the oscillation is faster, the frequency is higher and the pitch gets higher as well.
Answer
given,


mass of book = 0.305 Kg
so, from the diagram attached below




computing horizontal component




θ = 62.35°
The answer
2y + 14 = 17
The 17 is to the right of the = sign
It is also the answer
Answer:

Explanation:
first write the newtons second law:
F
=δma
Applying bernoulli,s equation as follows:
∑
Where,
is the pressure change across the streamline and
is the fluid particle velocity
substitute
for {tex]γ[/tex] and
for 

integrating the above equation using limits 1 and 2.

there the bernoulli equation for this flow is 
note:
=density(ρ) in some parts and change(δ) in other parts of this equation. it just doesn't show up as that in formular