answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
attashe74 [19]
2 years ago
13

A parallel-plate capacitor is constructed of two square plates, size L×L, separated by distance d. The plates are given charge ±

Q.
Part A
What is the ratio Ef/Ei of the final electric field strength Ef to the initial electric field strength Ei if Qis doubled?
Part BWhat is the ratio Ef/Ei of the final electric field strength Ef to the initial electric field strength Ei if Lis doubled?Part CWhat is the ratio Ef/Ei of the final electric field strength Ef to the initial electric field strength Ei if d is doubled?
Physics
1 answer:
vampirchik [111]2 years ago
3 0

Answer: A) 2 B) 4 C) 1

Explanation:

The Electric field from a parallel-plate capacitor  is given by:

A) E=Q/(L^2 * ε0) so if we put a charge double the final electric field is double that the original.

B) from the above expression for the electric field,  If the size of the plate is double, then the E final is four times weaker that the original.

C) If the distante between plates is doubled the final electric field is the same that initial.

You might be interested in
A pyrotechnical releases a 3 kg firecracker from rest. at t=0.4 s, the firecracker is moving downward with a speed 4 m/s. At the
olga2289 [7]

Answer:

a) F = 30 N, b)   I = 12 N s , c)  I = -12 N s , d) ΔI = 0 N s

Explanation:

This exercise is a case at the moment, let's define the system formed by the firecracker and its two parts, in this case the forces during the explosion are internal and the moment is conserved

Initial, before the explosion

     p₀ = m v

The speed can be found by kinematics

     v = v₀ - g t

     v = 0 - 10 0.4

     v = -4.0 m / s

Final after division

     pf = m₁ v₁f + m₂ v₂f

    p₀ = pf

    M v = m₁ v₁f + m₂ v₂f

Where M is the initial mass (M = 3 kg), m₁ is the mass mtop (m₁ = 1 kg) and m₂ in the mass m botton (m₂ = 2kg) and the piece that moves up (v₁f = 6m/s )

a) before the explosion the only force acting on the body is gravity

     F = mg

     F = 3 10 = 30 N

b) The expression for momentum is

     I = Ft

Before the explosion the only force that acts is the weight

    I = mg t

    I = 3 10 0.4

    I = 12 N s

c) To calculate this part we use the conservation of the moment and calculate the speed of the body that descends body 2

    M v = m₁ v₁f + m₂ v₂f

    v₂f = (M v - m₁ v₁f) / m₂

    v₂f = (3 (-4) - 1 6) / 2

   v₂f = - 9 m / 2

The negative sign indicates that body 2 (botton) is descending

Now we can use the momentum and momentum relationship for the body during the explosion

    I = F t = Dp

   F t = pf –po)

   F t= [m₁ v₁f + m₂ v₂f]

   

   I = [1 6 + 2 (-9) -0]

   I = -12 N s

This is the impulse during the explosion the negative sign indicates that it is headed down

d) impulse change

I₀ = Mv

I₀ = 3 *4

I₀ =-12 N s

 ΔI =If – I₀  

ΔI = - 12 – (-12)

ΔI = -0 N s

3 0
2 years ago
A 74.9 kg person sits at rest on an icy pond holding a 2.44 kg physics book. he throws the physics book west at 8.25 m/s. what i
never [62]

Answer:

The recoil velocity is 0.2687 m/s.

Explanation:

∵ The person is sitting on an icy surface , we can assume that the surface is frictionless.

∴ There is no force acting acting on the person and book as a system in horizontal direction.

Hence , momentum is conserved for this system in horizontal direction of motion.

If 'i' and 'f' be the initial and final states of this system , then by principle of conservation of momentum(p)  -

p_{i}=p_{f}

System initially is at rest

∴p_{i}=0

∴ From the above 2 equations

p_{f}=0

We know that ,

Momentum(p)=Mass of the body(m)×velocity of the body(v)

Let m_{1} and m_{2} be the mass of the person and the book respectively and v_{1} and v_{2} be the final velocities of the person and book respectively.

∴p_{f}=m_{1}v_{1}+m_{2}v_{2}=0

From the question ,

m_{1} = 74.9 kg

m_{2} = 2.44 kg

v_{2} = 8.25 m/s

Substituting these values in the above equation we get ,

(74.9 × v_{1} )+ (2.44×8.25) = 0

∴v_{1}  = - 0.2687 m/s (Negative sign suggests that the motion of  the person is opposite to that of the book)

∴ The recoil velocity is 0.2687 m/s.

4 0
2 years ago
Gas a bG1 5.22 0.0289G2 1.05 0.0388G3 2.31 0.0467G4 4.05 0.0310Based on the given van der Waals constants for four hypothetical
inysia [295]

Answer:

Gas 2, Gas 3, Gas 4, Gas 5 is the order of decreasing strength of inter-molecular forces.

Explanation:

The strength increases as there is a decrease in the vanderwaals constant and vice versa.

3 0
1 year ago
Based on the time measurements in the table, what can be said about the speed of the car on the lower track as compared to the h
raketka [301]

Answer:

1.a

2.longer

Explanation:

7 0
1 year ago
Read 2 more answers
"A block of metal weighs 40 N in air and 30 N in water. What is the buoyant force on the block due to the water? The density of
Alja [10]

Answer:

buoyant force on the block due to the water= 10 N

Explanation:

We know that

buoyant force(F_B) on a block= weight of the block in air (actual weight) - weight of block in water.

Given:

A block of metal weighs 40 N in air and 30 N in water.

F_B =  40-30= 10 N

therefore,  buoyant force on the block due to the water= 10 N

6 0
1 year ago
Read 2 more answers
Other questions:
  • Elements in group 2 are all called alkaline earth metals. What is most similar about the alkaline earth metals? how many protons
    5·2 answers
  • A 2400-kg satellite is in a circular orbit around a planet. the satellite travels with a constant speed of 6670 m/s. the radius
    6·2 answers
  • Sir Marvin decided to improve the destructive power of his cannon by increasing the size of his cannonballs. Sir Seymour kept hi
    13·1 answer
  • Which best describes what forms in nuclear fission?A. two smaller, more stable nucleiB. two larger, less stable nucleiC. one sma
    7·2 answers
  • A steel rod with a length of l = 1.55 m and a cross section of A = 4.45 cm2 is held fixed at the end points of the rod. What is
    6·1 answer
  • A floating leaf oscillates up and down two complete cycles in one second as a water wave passes by. The wave's wavelength is 10
    12·1 answer
  • Three wires are made of copper having circular cross sections. Wire 1 has a length l and radius r. Wire 2 has a length l and rad
    10·1 answer
  • A ping-pong ball weighs 0.025 N. The ball is placed inside a cup that sits on top of a vertical spring. If the spring is compres
    6·1 answer
  • At what location in the refrigerator is the most thermal energy removed?
    12·1 answer
  • 1. Determina el momento que produce una fuerza de 7 N tangente a una rueda de un metro de diámetro, sabiendo que el punto de apl
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!