Answer:
Explanation:
Given
Two block are connected by rope 
rope is attached to block 2
suppose
is a force applied to Rope
Applied force
=Tension in Rope 2

where a=acceleration of system
Tension in rope
is denoted by 

divide 1 and 2 we get

also 



Thank you for posting your question here at brainly. I hope the answer will help. Below are the choices that can be found elsewhere:
<span>A. 1.5 * 10^3 Watts
B. 7.3 * 10^2 Watts
C. 3.5 * 10^2 Watts
D. 2.5 * 10^2 Watts
</span>
<span>Work = force*displacement = 10^2*87 = 8,700 joule
Power = work/time = 8,700/6 = 1.45*10^3 (rounded up to 1.5 kw). The answer is A. </span>
I think the correct answer from the choices listed above is the second option. Based on this information, we can say that there are more molecules in a gram of water since more energy is required to raise the temperature 1 gram of water than to raise the temperature of 1 gram of ethanol.
Answer:
acceleration = 2.4525 m/s²
Explanation:
Data: Let m1 = 3.0 Kg, m2 = 5.0 Kg, g = 9.81 m/s²
Tension in the rope = T
Sol: m2 > m1
i) for downward motion of m2:
m2 a = m2 g - T
5 a = 5 × 9.81 m/s² - T
⇒ T = 49.05 m/s² - 5 a Eqn (a)
ii) for upward motion of m1
m a = T - m1 g
3 a = T - 3 × 9.8 m/s²
⇒ T = 3 a + 29.43 m/s² Eqn (b)
Equating Eqn (a) and(b)
49.05 m/s² - 5 a = T = 3 a + 29.43 m/s²
49.05 m/s² - 29.43 m/s² = 3 a + 5 a
19.62 m/s² = 8 a
⇒ a = 2.4525 m/s²