There could be a little bit of conduction through the air that's between the soup and your hand. But it's very small, because air is not a good conductor of heat.
It's mostly <em>convection</em> ... hot air and steam rising from the soup to your hand.
Then, of course, there HAS to be some conduction when the hot gases reach your hand ... their heat has to soak into your skin, and that's conduction.
Answer:
a) The sign of the charge is positive.
b) The magnetic force on the particle is 0.050 newtons.
Explanation:
The magnetic force F on a moving charge with velocity v passing through a magnetic field B is:
(1)
a)
Because it is a cross product, we can find the direction of the force using the right-hand rule, that is too the direction of the movement. We have two possibilities here because the velocity vector and magnetic field are perpendicular: the particle deflects towards east or toward west, which depends on the charge of the particle. Note that if you put your right hand fingers, except thumb, pointing towards north (direction of velocity) and later close them in the direction of the magnetic field, if you maintain your thumb perpendicular to this movement it will point towards east (See figure), so that will be de direction of the force if the charge is positive, but if the charge is negative, the direction will be opposite (towards west). So the charge has to be positive to deflects towards east.
b)
Now by 1:

Answer:
The speed with which the baseball leaves the hand = 20.58 m/s
Explanation:
The time take to reach highest height during a projectile's flight is given by
t = (u sin θ)/g
u = initial velocity of the baseball = ?
θ = angle of throw above the horizontal
g = acceleration due to gravity = 9.8 m/s²
1.05 = (u sin 30)/9.8
u = (1.05 × 9.8)/0.5
u = 20.58 m/s
Answer:
h = v₀² / 2g
, h = k/4g x²
Explanation:
In this exercise we can use the law of conservation of energy at two points, the lowest, before the shot and the highest point that the mouse reaches
Starting point. Lower compressed spring
Em₀ = K = ½ m v²
Final point. Highest on the path
= U = mg h
As or no friction the energy is conserved
Em₀ = Em_{f}
½ m v₀²² = m g h
h = v₀² / 2g
We can also use as initial energy the energy stored in the spring that will later be transferred to the mouse
½ k x² = 2 g h
h = k/4g x²