They have different accelerations because of their masses. According to Newton's Second Law, an objects acceleration is inversely proportional to its mass. Therefore the object with the larger mass, in this case the gun, will have a smaller acceleration. In the same way, the less massive object, being the bullet, will have a higher acceleration.
Hope this helps :)
Answer:
In hot gases , the atoms keeps colliding with each other and sometimes the energy liberated during collision takes the electron to a higher level,thus, .The object is a cloud of hot gas and finally the electron returns back emitting photon
Weight = mass * gravity
420 = mass * 9.8
mass of Betty = 42.857 kg
Difference in height = 1 - 0.45 = 0.55 meters
Total energy = Kinetic energy + potential energy
At the highest point, the kinetic energy is zero while the potential energy is maximum, therefore, we can get the total energy as follows:
Total energy = 0 + mgh
Total energy = 42.857*9.8*0.55 = 231 Joules
At the lowest point, the potential energy is zero while the kinetic energy is maximum. Therefore:
Total energy = 0.5 * m * (v)^2 + 0
231 = 0.5 * (42.857) * (velocity)^2
(velocity)^2 = 10.78
velocity = 3.28 meters/sec
Answer:
see explanation below
Explanation:
Given that,
500°C
= 25°C
d = 0.2m
L = 10mm = 0.01m
U₀ = 2m/s
Calculate average temperature

262.5 + 273
= 535.5K
From properties of air table A-4 corresponding to
= 535.5K 
k = 43.9 × 10⁻³W/m.k
v = 47.57 × 10⁻⁶ m²/s

A)
Number for the first strips is equal to


Calculating heat transfer coefficient from the first strip


The rate of convection heat transfer from the first strip is

The rate of convection heat transfer from the fifth trip is equal to


Calculating 

The rate of convection heat transfer from the tenth strip is


Calculating

Calculating the rate of convection heat transfer from the tenth strip

The rate of convection heat transfer from 25th strip is equal to

Calculating 

Calculating 

Calculating the rate of convection heat transfer from the tenth strip
