Let m = mass of asteroid y.
Because asteroid y has three times the mass of asteroid z, the mass of asteroid z is m/3.
Given:
F = 6.2x10⁸ N
d = 2100 km = 2.1x10⁶ m
Note that
G = 6.67408x10⁻¹¹ m³/(kg-s²)
The gravitational force between the asteroids is
F = (G*m*(m/3))/d² = (Gm²)/(3d²)
or
m² = (3Fd²)/G
= [(3*(6.2x10⁸ N)*(2.1x10⁶ m)²]/(6.67408x10⁻¹¹ m³/(kg-s²))
= 1.229x10³² kg²
m = 1.1086x10¹⁶ kg = 1.1x10¹⁶ kg (approx)
Answer: 1.1x10¹⁶ kg
Answer:


Explanation:
As the disc is unrolling from the thread then at any moment of the time
We have force equation as

also by torque equation we can say



Now we have



Also from above equation the tension force in the string is


Answer:
C) True. S increases with time, v₁ = gt and v₂ = g (t-t₀) we see that for the same t v₁> v₂
Explanation:
You have several statements and we must select which ones are correct. The best way to do this is to raise the problem.
Let's use the vertical launch equation. The positive sign because they indicate that the felt downward is taken as an opponent.
Stone 1
y₁ = v₀₁ t + ½ g t²
y₁ = 0 + ½ g t²
Rock2
It comes out a little later, let's say a second later, we can use the same stopwatch
t ’= (t-t₀)
y₂ = v₀₂ t ’+ ½ g t’²
y₂ = 0 + ½ g (t-t₀)²
y₂ = + ½ g (t-t₀)²
Let's calculate the distance between the two rocks, it should be clear that this equation is valid only for t> = to
S = y₁ -y₂
S = ½ g t²– ½ g (t-t₀)²
S = ½ g [t² - (t²- 2 t to + to²)]
S = ½ g (2 t t₀ - t₀²)
S = ½ g t₀ (2 t -t₀)
This is the separation of the two bodies as time passes, the amount outside the Parentheses is constant.
For t <to. The rock y has not left and the distance increases
For t> = to. the ratio (2t/to-1)> 1 therefore the distance increases as time
passes
Now we can analyze the different statements
A) false. The difference in height increases over time
B) False S increases
C) Certain s increases with time, v₁ = gt and V₂ = g (t-t₀) we see that for the same t v₁> v₂
Using the formula A squared plus B squared equals C squared, we can find the solution by substituting 5 for A and 12 for B.
By squaring 5, we get 25, and by squaring 12, we get 144. Adding these, we get 169. The square root of this is 13.