answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
babunello [35]
2 years ago
5

A lab assistant drops a 400.0-g piece of metal at 100.0°C into a 100.0-g aluminum cup containing 500.0 g of water at In a few mi

nutes, she measures the final temperature of the system to be 40.0°C. What is the specific heat of the 400.0-g piece of metal, assuming that no significant heat is exchanged with the surroundings? The specific heat of this aluminum is 900.0 J/kg ∙ K and that of water is 4186 J/kg ∙ K.
A) 1900 J/kg K
B) 2270 J/kg. K
C) 3300 J/kg K
D) 3800 J/kg K
E) 4280 J/kg K
Physics
1 answer:
Nataliya [291]2 years ago
7 0

Answer:

2274 J/kg ∙ K

Explanation:

The complete statement of the question is :

A lab assistant drops a 400.0-g piece of metal at 100.0°C into a 100.0-g aluminum cup containing 500.0 g of water at 15 °C. In a few minutes, she measures the final temperature of the system to be 40.0°C. What is the specific heat of the 400.0-g piece of metal, assuming that no significant heat is exchanged with the surroundings? The specific heat of this aluminum is 900.0 J/kg ∙ K and that of water is 4186 J/kg ∙ K.

m_{m} = mass of metal = 400 g

c_{m} = specific heat of metal = ?

T_{mi} = initial temperature of metal = 100 °C

m_{a} = mass of aluminum cup = 100 g

c_{a} = specific heat of aluminum cup = 900.0 J/kg ∙ K

T_{ai} = initial temperature of aluminum cup = 15 °C

m_{w} = mass of water = 500 g

c_{w} = specific heat of water = 4186 J/kg ∙ K

T_{wi} = initial temperature of water = 15 °C

T = Final equilibrium temperature = 40 °C

Using conservation of energy

heat lost by metal = heat gained by aluminum cup + heat gained by water

m_{m} c_{m} (T_{mi} - T) = m_{a} c_{a} (T - T_{ai}) + m_{w} c_{w} (T - T_{wi} ) \\(400) (100 - 40) c_{m} = (100) (900) (40- 15) + (500) (4186) (40 - 15)\\ c_{m} = 2274 Jkg^{-1}K^{-1}

You might be interested in
g 2. The _____ spans the distance from the _____ to the location of the applied force. moment arm; pivot point moment of inertia
Alik [6]

Answer:

The correct answer to the following question will be Option A (moment arm; pivot point).

Explanation:

  • The moment arm seems to be the duration seen between joint as well as the force section trying to act mostly on the joint. Each joint that is already implicated in the workout seems to have a momentary arm.
  • The moment arm extends this same distance from either the pivot point to just the position of that same pressure exerted.
  • The pivotal point seems to be the technical indicators required to fully measure the appropriate demand trends alongside different time-frames.

The other three choices are not related to the given situation. So that option A is the appropriate choice.

7 0
2 years ago
An object thrown in the air has a velocity after t seconds that can be described by v(t) = -9.8t + 24 (in meters/second) and a h
marin [14]

Answer and Explanation: Kinetic energy is related to movement: it is the energy an object possesses during the movement. it is calculated as:

K=\frac{1}{2}mv^{2}

For the object thrown in the air:

K=\frac{1}{2}.2.[v(t)]^{2}

K=(-9.8t+24)^{2}

K=96.04t^{2}-470.4t+576

Kinetic energy of the object as a function of time: K=96.04t^{2}-470.4t+576

Potential energy is the energy an object possesses due to its position in relation to other objects. It is calculated as:

U=mgh

For the object thrown in the air:

U=9.8.2.h(t)

U=9.8.2.(-4.9t^{2}+24t+60)

U=-96.04t^{2}+470.4t+1176

Potential energy as function of time: U=-96.04t^{2}+470.4t+1176

Total kinetic and potential energy, also known as mechanical energy is

TME = 96.04t^{2}-470.4t+576 + (-96.04t^{2}+470.4t+1176)

TME = 1752

The expression shows that total energy of an object thrown in the air is constant and independent of time.

6 0
1 year ago
Find the net electric force that the two charges would exert on an electron placed at point on the xx-axis at xx = 0.200 mm. Exp
UkoKoshka [18]

Answer:

The question has some details missing, here is the complete question ; A -3.0 nC point charge is at the origin, and a second -5.0nC point charge is on the x-axis at x = 0.800 m. Find the net electric force that the two charges would exert on an electron placed at point on the x-axis at x = 0.200 m.

Explanation:

The application of coulonb's law is used to approach the question as shown in the attached file.

6 0
1 year ago
2. Harry is pushing a car down a level road at 2.0 m/s with a force of 243 N. The total force
Arte-miy333 [17]

b) Equal to 243 N.

Explanation:

The total force acting on the car in the opposite direction including the road friction and air resistance is equal to 243 N.

This is in conformity with newton's third law of motion.

Newton's third law of motion states that "action and reaction are equal and opposite in direction. "

  • The action force is that of the pull by Harry acting on the car.
  • The reaction force is in the opposite direction.
  • Both action and reaction force equal and opposite and magnitude and direction

learn more:

Newton's laws brainly.com/question/11411375

#learnwithBrainly

3 0
2 years ago
Two students grab a slinky and start waving it up and down. A third student counts the number of waves that pass by every second
deff fn [24]

Velocity = frequency * wavelength

v = fλ, Just pick any points on the graph for frequency f and corresponding λ. Taking the first red point at the top. λ = 6m, f = 1 Hz, v = 6 * 1, v = 6 m/s  


V = 6 M/S

4 0
2 years ago
Read 2 more answers
Other questions:
  • In the absence of air resistance, at what other angle will a thrown ball go the same distance as one thrown at an angle of 75 de
    13·1 answer
  • a closed systems internal energy changes by 178 j as a result of being heated with 658 j of energy. the energy used to do work b
    14·1 answer
  • Which was the first object made by humans to orbit earth?
    14·1 answer
  • A helicopter, starting from rest, accelerates straight up from the roof of a hospital. The lifting force does work in raising th
    11·1 answer
  • Calculate the intrapleural pressure if atmospheric pressure is 765 millimeters of mercury, assuming that the subject is at rest
    15·1 answer
  • A sled having a certain initial speed on a horizontal surface comes to rest after traveling 10 m. If the coefficient of kinetic
    12·1 answer
  • An inductor is connected in series to a fully charged capacitor. Which of the following statements are true? Check all that appl
    14·1 answer
  • A solid conducting sphere with radius R that carries positive charge Q is concentric with a very thin insulating shell of radius
    14·1 answer
  • What is the change in entropy of helium gas with total mass 0.135 kg at the normal boiling point of helium when it all condenses
    13·1 answer
  • _____ is a mathematical theory for developing strategies that maximize gains and minimize losses while adhering to a given set o
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!