answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gwar [14]
2 years ago
10

When the volcano Krakatoa erupted in 1883, it was heard 5000 km away. Which statement about the sound from the volcano is not co

rrect?
a. If such a loud sound were to be made today, an astronaut orbiting in space (a vacuum) at a height of 400 km could hear it.
b. People further from the volcano heard the sound later than people nearer to the volcano.
c. The amplitude of the sound waves would have been smaller further from the volcano.
d. The sound was very loud because a lot of energy was transferred to vibrations of the air.
Physics
1 answer:
lina2011 [118]2 years ago
7 0
Answer a) is incorrect as sound does not travel in a vacuum.
You might be interested in
A glass beaker of unknown mass contains of water. The system absorbs of heat and the temperature rises as a result. What is the
kakasveta [241]

From the information provided in the question, the mass of the beaker is 144.4 g.

From the information provided in the complete question;

volume of water = 74 mL

Mass of water = 74 g

specific heat of glass = 0.18 cal/g ∙ °C

specific heat of water = 1.0 cal/g ∙ C°

Mass of glass =  x g

Total heat gained by the system = 2000.0cal

Temperature rise = 20.0°C

Heat gained by system = Heat gained  by glass + Heat gained by water

Heat gained by glass = x ×  0.18 × 20

Heat gained by water = 74  ×  1.0 × 20

Hence;

2000 =  (x ×  0.18 × 20) + ( 74  ×  1.0 × 20)

2000 - 1480 =  (x ×  0.18 × 20)

x = 520/3.6

x = 144.4 g

Missing parts;

A glass beaker of unknown mass contains 74.0 ml of water. The system absorbs 2000.0cal of heat and the temperature rises 20.0°C as a result. What is the mass of the beaker? The specific heat of glass is 0.18

cal/g °C, and that of water is 1.0 cal/g °C.​

Learn more: brainly.com/question/1446583

3 0
1 year ago
In an experiment, students roll several hoops down the same incline plane. Each hoop has the same mass but a different radius. E
insens350 [35]

Answer:

The graph should have velocity (v) on the y-axis and radius (r) on the x-axis. It will have a straight, horizontal line that goes across the graph.

Explanation:

KE=\frac{1}{2} I(omega)^{2}

Shown above is the formula for Kinetic Energy in rotational terms. I'm new to brain.ly so I couldn't insert the omega symbol, sorry about that. Omega can be replaced with \frac{v^{2} }{r^2}. Moment of Inertia (I) can be replaced with mr^2.

The equation becomes KE=\frac{1}{2} mr^2(\frac{v^2}{r^2} ) .

The r's cancel out, making the different radii negligible, causing a straight horizontal line.

5 0
2 years ago
5. Measure: With the lights on, click Pause. Turn on Show rulers. A. The wavelength of a longitudinal wave is equal to the dista
Marysya12 [62]

Explanation:

A) The distance between the two successive compressions (or rarefactions) is actually called the wavelength of the longitudinal waves.

B) Wavelengths of longitudinal and transverse waves are comparable in the fact that in a transverse wave, the particles move perpendicular to the direction the wave travels whereas in a longitudinal wave the particles are displaced along the direction to the direction the wave travels

6 0
2 years ago
Calculate the amount of work done to draw a current of 8A from a point at 100V to a point at 120V in 2 seconds?
Morgarella [4.7K]
Given:
I=8A
t=2second
Potential difference,V=120-100=20volt
Workdone=V×i×t
=20×8×2
=320 joule.
3 0
2 years ago
A 63.0 kg astronaut is on a spacewalk when the tether line to the shuttle breaks. the astronaut is able to throw a spare 10.0 kg
Llana [10]

There are other forces at work here nevertheless we will imagine it is just a conservation of momentum exercise. Also the given mass of the astronaut is light astronaut.

The solution for this problem is using the formula: m1V1=m2V2 but we need to get V1:

V1= (m2/m1) V2


V1= (10/63) 12 = 1.9 m/s will be the final speed of the astronaut after throwing the tank. 

6 0
2 years ago
Read 2 more answers
Other questions:
  • Suppose we replace both hover pucks with pucks that are the same size as the originals but twice as massive. otherwise, we keep
    11·2 answers
  • Explain where you observe reflection, refraction, and absorption of light in your everyday activities
    9·1 answer
  • A piano wire has a length of 81 cm and a mass of 2.0
    6·1 answer
  • Waves inwhich the particles vibrate at right angles to direction is called
    8·1 answer
  • A crate feels a 277 n normal force as it sits on the ground. what is its mass?
    12·2 answers
  • Some of the fastest dragsters (called "top fuel) do not race for more than 300-400m for safety reasons. Consider such a dragster
    5·1 answer
  • In Michael Johnson's world-record 400 m sprint, he ran the first 100 m in 11.20 s; then he reached the 200 m mark after a total
    12·1 answer
  • a water heater has a power rating of 1 kW. how many seconds will this heater take to boil 1 liter of water?
    9·1 answer
  • A certain force gives object m1 an acceleration of 12.0 m/s2. The same force gives object m2 an acceleration of 3.30 m/s2. What
    7·1 answer
  • A car is traveling at 20.0 m/s on tires with a diameter of 70.0 cm. The car slows down to a rest after traveling 300.0 m. If the
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!