Answer:

Explanation:
The attached image shows the system expressed in the question.
We can define an expression for the system.
The equivalent equation for the system would be

so, the input signal could be expressed in dB terms
(1)
so the output signal could be expressed as.

The gain should be expressed in dB terms and power in dBm terms so

using the (1) equation to find it in terms of Watts

Answer:
The volume of the larger cube is 5.08 g/cm³.
Explanation:
Given that,
Mass of smaller cube = 20 g
Density of smaller cube 
Dylan has two cubes of iron.
The larger cube has twice the mass of the smaller cube.

Density is same for both cubes because both cubes are same material.
The density is equal to the mass divided by the volume.


Where, V = volume
m = mass

We need to calculate the volume of smaller mass
The volume of smaller mass



Now, We need to calculate the volume of large cube



Hence, The volume of the larger cube is 5.08 g/cm³.
Answer:

Explanation:
During the exchange of applied force, thermal energy is generated by the friction that exists between the ground and the tire.
Said force according to the statement is the reaction of half the force on the rear tire. In this way the normal force acted is,

The work done is given by the friction force and the distance traveled,

Where ![\mu_k [/ tex] is the coefficient of kinetic frictionN is the normal force previously found d is the distance traveled,Replacing,[tex]W_f = (0.80)(441)(0.42)](https://tex.z-dn.net/?f=%20%5Cmu_k%20%5B%2F%20tex%5D%20is%20the%20coefficient%20of%20kinetic%20friction%3C%2Fp%3E%3Cp%3EN%20is%20the%20normal%20force%20previously%20found%20d%20is%20the%20distance%20traveled%2C%3C%2Fp%3E%3Cp%3EReplacing%2C%3C%2Fp%3E%3Cp%3E%5Btex%5DW_f%20%3D%20%280.80%29%28441%29%280.42%29)
The thermal energy released through the work done is,

Answer:
8.67807 N
34.7123 N
Explanation:
m = Mass of shark = 92 kg
= Density of seawater = 1030 kg/m³
= Density of freshwater = 1000 kg/m³
= Density of shark = 1040 kg/m³
g = Acceleration due to gravity = 9.81 m/s²
Net force on the fin is (seawater)

The lift force required in seawater is 8.67807 N
Net force on the fin is (freshwater)

The lift force required in a river is 34.7123 N