answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elenna [48]
1 year ago
12

A nervous squirrel gets startled and runs 5.0\,\text m5.0m5, point, 0, space, m leftward to a nearby tree. The squirrel runs for

0.50\,\text s0.50s0, point, 50, space, s with constant acceleration, and its final speed is 15.0\,\dfrac{\text m}{\text s}15.0 s m ​ 15, point, 0, space, start fraction, m, divided by, s, end fraction. What was the squirrel's initial velocity before getting startled
Physics
2 answers:
Phantasy [73]1 year ago
8 0

Answer:

The squirrel's initial velocity is 5 m/s.

Explanation:

It is given that,

Distance covered by the squirrel, d = 5 m

Time taken, t = 0.5 s

Final speed of the squirrel, v = 15 m/s

To find,

The squirrel's initial velocity.

Solution,

Let a is the acceleration of the squirrel. Using the first equation of motion to find it :

a=\dfrac{v-u}{t}

a=\dfrac{15-u}{0.5}..............(1)

Let u is the initial speed of the squirrel. Using again third equation of kinematics to find it :

v^2-u^2=2ad

Use equation (1) to put value of a

(15)^2-u^2=2\times \dfrac{15-u}{0.5}\times 5

225-u^2=20(15-u)

On solving the above quadratic equation, we get the value of u as :

u = 5 m/s

Therefore, the squirrel's initial velocity before getting started is 5 m/s.

mel-nik [20]1 year ago
6 0

Answer:

−5.0  

Explanation:

You might be interested in
A biophysics experiment uses a very sensitive magnetic field probe to determine the current associated with a nerve impulse trav
fenix001 [56]

Answer:

The peak current carried by the axon is 5.85 x 10⁻⁸ A

Explanation:

Given;

distance of the field from the axon, r = 1.3 mm

peak magnetic field strength, B = 9 x 10⁻¹² T

To determine the peak current carried by the axon, apply the following equation;

B = \frac{\mu I}{2\pi r}

where;

B is the peak magnetic field

r is the distance of the magnetic field from axon

μ is permeability of free space = 4π x 10⁻⁷

I is the peak current

Re-arrange the equation and solve for "I"

B = \frac{\mu I}{2\pi r} \\\\I = \frac{B*2\pi r}{\mu} \\\\I = \frac{9*10^{-12}*2*\pi *1.3*10^{-3}}{4\pi *10^{-7}} \\\\I = 5.85 *10^{-8} \ A

Therefore, the peak current carried by the axon is 5.85 x 10⁻⁸ A

7 0
1 year ago
The heat capacity of an object depends in part on its ____.
nikdorinn [45]
If I remember it correctly, heat capacity is inversely proportional to mass so the answer is:
The heat capacity of an object depends in part on its a. mass
7 0
1 year ago
Suppose the foreman had released the box from rest at a height of 0.25 m above the ground. What would the crate's speed be when
Arturiano [62]

Answer:

v = 2.21 m/s

Explanation:

The foreman had released the box from rest at a height of 0.25 m above the ground.

We need to find the speed of the crate when it reaches the bottom of the ramp. Let v is the velocity at the bottom of the ramp. It can be calculated using conservation of energy as follows :

mgh=\dfrac{1}{2}mv^2\\\\v=\sqrt{2gh} \\\\v=\sqrt{2\times 9.8\times 0.25} \\\\v=2.21\ m/s

So, its velocity at the bottom of the ramp is 2.21 m/s.

4 0
1 year ago
A 12 kg box sliding on a horizontal floor has an initial speed of 4.0 m/s. The coefficient of friction bctwecn thc box and the f
Hitman42 [59]

Answer:

(D) 96 kg-m/s

Explanation:

Let's start off by first calculating the normal force between the box and the floor.

This will be:

Normal Force = 12 * 9.81 = 117.72 N

We can now use the friction equation to find the frictional force on the box when it is moving:

Frictional force = Coefficient of friction * Normal Force

Frictional force = 0.4 * 117.72 = 47.09 N

Finally, since we have the force on the box, we can find the acceleration:

F = Mass * Acceleration

47.09 = 12 * Acceleration

Acceleration = 3.92 m/s^2

Final speed after 2 seconds:

V=U+a*t

V = 4 +(-3.92)*(2)

V= -3.84 m/s

Since we know the initial and final speeds, we can calculate the change in momentum:

Change in momentum = Final Momentum - Initial Momentum

Change in momentum = 3.84*12-(-4)*12

Change in momentum = 94.08 kg*m/s

Thus we can see that option (D) is the closest answer.

6 0
1 year ago
When explaining chemical reactions to a friend, Brianna models a reaction by taking several colors of modeling clay and making a
Drupady [299]

Answer: synthesis

Explanation:

5 0
1 year ago
Read 2 more answers
Other questions:
  • A particle's trajectory is described by x =(12t3−2t2)m and y =(12t2−2t)m, where t is in s.
    9·2 answers
  • A rock is thrown horizontally at a speed of 5.0 m/s from the top of a cliff 64.7 m high. The rock hits the ground 18.0 m from th
    14·2 answers
  • A uniform electric field with a magnitude of 125 000 N/C passes through a rectangle with sides of 2.50 m and 5.00 m. The angle b
    10·1 answer
  • Many industries are powered via distant power stations. Calculate the current flowing through a 7,300m long 10. copper power lin
    15·1 answer
  • A paper clip is made of wire 0.5 mm in diameter. If the original material from which the wire is made is a rod 25 mm in diameter
    9·1 answer
  • Water is stored in a municipal water tank at a mean height of 25 m. If a faucet of diameter 1.2 cm is opened in a house at groun
    7·1 answer
  • __________ curves help lessen the effect of the force of the forward motion on your vehicle as it enters the curve.
    12·1 answer
  • A box of mass m is pulled with a constant acceleration a along a horizontal frictionless floor by a wire that makes an angle of
    5·1 answer
  • A simple arrangement by means of which e.m.f,s. are compared is known
    8·1 answer
  • When calculating acceleration, to find the change in velocity, you subtract the ____________________ velocity from the _________
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!