Answer:
The speed of bullet and wooden bock coupled together, V = 22.22 m/s
Explanation:
Given that,
Mass of the bullet, m = 0.04 Kg
Mass of the wooden block, M = 0.5 Kg
The initial velocity of the bullet, u = 300 m/s
The initial velocity of the wooden block, U = 0 m/s
The final velocity of the bullet and wooden bock coupled together, V = 0 m/s
According to the conservation of linear momentum, the total momentum of the body after impact is equal to the total momentum before impact.
Therefore,
mV + MV = mu + MU
V(m+M) = mu
V = mu/(m+M)
Substituting the values in the above equation,
V = 0.04 Kg x 300 m/s / (0.04 Kg+ 0.5 Kg)
= 22.22 m/s
Hence, the speed of bullet and wooden bock coupled together, V = 22.22 m/s
Answer:
The fraction of mass that was thrown out is calculated by the following Formula:
M - m = (3a/2)/(g²- (a²/2) - (ag/2))
Explanation:
We know that Force on a moving object is equal to the product of its mass and acceleration given as:
F = ma
And there is gravitational force always acting on an object in the downward direction which is equal to g = 9.8 ms⁻²
Here as a convention we will use positive sign with acceleration to represent downward acceleration and negative sign with acceleration represent upward acceleration.
Case 1:
Hot balloon of mass = M
acceleration = a
Upward force due to hot air = F = constant
Gravitational force downwards = Mg
Net force on balloon is given as:
Ma = Gravitational force - Upward Force
Ma = Mg - F (balloon is moving downwards so Mg > F)
F = Mg - Ma
F = M (g-a)
M = F/(g-a)
Case 2:
After the ballast has thrown out,the new mass is m. The new acceleration is -a/2 in the upward direction:
Net Force is given as:
-m(a/2) = mg - F (Balloon is moving upwards so F > mg)
F = mg + m(a/2)
F = m(g + (a/2))
m = F/(g + (a/2))
Calculating the fraction of the initial mass dropped:
![M-m = \frac{F}{g-a} - \frac{F}{g+\frac{a}{2} }\\M-m = F*[\frac{1}{g-a} - \frac{1}{g+\frac{a}{2} }]\\M-m = F*[\frac{(g+(a/2)) - (g-a)}{(g-a)(g+(a/2))} ]\\M-m = F*[\frac{g+(a/2) - g + a)}{(g-a)(g+(a/2))} ]\\M-m = F*[\frac{(3a/2)}{g^{2}-\frac{a^{2}}{2}-\frac{ag}{2}} ]](https://tex.z-dn.net/?f=M-m%20%3D%20%5Cfrac%7BF%7D%7Bg-a%7D%20-%20%5Cfrac%7BF%7D%7Bg%2B%5Cfrac%7Ba%7D%7B2%7D%20%7D%5C%5CM-m%20%3D%20F%2A%5B%5Cfrac%7B1%7D%7Bg-a%7D%20-%20%5Cfrac%7B1%7D%7Bg%2B%5Cfrac%7Ba%7D%7B2%7D%20%7D%5D%5C%5CM-m%20%3D%20F%2A%5B%5Cfrac%7B%28g%2B%28a%2F2%29%29%20-%20%28g-a%29%7D%7B%28g-a%29%28g%2B%28a%2F2%29%29%7D%20%5D%5C%5CM-m%20%3D%20F%2A%5B%5Cfrac%7Bg%2B%28a%2F2%29%20-%20g%20%2B%20a%29%7D%7B%28g-a%29%28g%2B%28a%2F2%29%29%7D%20%5D%5C%5CM-m%20%3D%20F%2A%5B%5Cfrac%7B%283a%2F2%29%7D%7Bg%5E%7B2%7D-%5Cfrac%7Ba%5E%7B2%7D%7D%7B2%7D-%5Cfrac%7Bag%7D%7B2%7D%7D%20%5D)
Answer:
pu = 1260.9kg/m^3
the density of the unknown liquid is 1260.9kg/m^3
Explanation:
The density of a liquid is inversely proportional to the volume (height) of object submerged in it.
High density liquid possess higher buoyant force preventing objects from submerging.
p ∝ 1/V ∝ 1/h
since V = Ah
pu/pw = hw/hu
pu = pwhw/hu
Where;
p = density
h = height submerged
pu and pw is the density of unknown liquid and water respectively
hu and hw is the height of object submerged in unknown liquid and water respectively
pw = 1000kg/m^3
hu = 4.6cm = 0.046m
hw = 5.8cm = 0.058m
Substituting the given values;
pu = 1000×0.058/0.046
pu = 1260.9kg/m^3
the density of the unknown liquid is 1260.9kg/m^3
The equation for momentum is p =
mv where p is the omentum, m is the mass and v is the velocity. Calculating the
momentum for each football player, player A will have a momentum of 1050
lb-mi/h and player B will have a momentum of 570 lb-mi/h. Therefore, momentum of player A is greater than that of
player B.