Answer:
(a) v = 3..6 m/s
(b) The rain falling downward has been able to affect the horizontal motion of the car by reducing it's velocity from 4 m/s to 3.6 m/s.
Explanation:
from the question we have the following:
mass of the car (Mc) = 24,000 kg
initial velocity of the car (u) = 4 m/s
mass of water (Mw) = 3000 kg
final velocity of the car (v) = ?
(a) we can calculate the final momentum of the car by applying the conservation of momentum where
initial momentum = final momentum
Mc x U = (Mc + Mw) x V
24000 x 4 = (24000 + 3000) x v
96,000 = 27000v
v =3.6 m/s
(b) The rain falling downward has been able to affect the horizontal motion of the car by reducing it's velocity from 4 m/s to 3.6 m/s.
The pickup accelerates towards right. The box is sticky to the pickup, thus its acceleration is the same, towards right. Its inertia (force) is oposing the acceleration, thus it is towards left. For the box not to move, it is necessary that the truck acts on it with a force towards right. (The two forces of the truck on box and the box inertia (force) equilibrate themselves).
Answer:
A.)1.52cm
B.)1.18cm
Explanation:
angular speed of 120 rev/min.
cross sectional area=0.14cm²
mass=12kg
F=120±12ω²r
=120±12(120×2π/60)^2 ×0.50
=828N or 1068N
To calculate the elongation of the wire for lowest and highest point
δ=F/A
= 1068/0.5
δ=2136MPa
'E' which is the modulus of elasticity for alluminium is 70000MPa
δ=ξl=φl/E =2136×50/70000=1.52cm
δ=F/A=828/0.5
=1656MPa
δ=ξl=φl/E
=1656×50/70000=1.18cm

Answer:
The gravitational potential energy of a system is -3/2 (GmE)(m)/RE
Explanation:
Given
mE = Mass of Earth
RE = Radius of Earth
G = Gravitational Constant
Let p = The mass density of the earth is
p = M/(4/3πRE³)
p = 3M/4πRE³
Taking for instance,a very thin spherical shell in the earth;
Let r = radius
dr = thickness
Its volume is given by;
dV = 4πr²dr
Since mass = density* volume;
It's mass would be
dm = p * 4πr²dr
The gravitational potential at the center due would equal;
dV = -Gdm/r
Substitute (p * 4πr²dr) for dm
dV = -G(p * 4πr²dr)/r
dV = -G(p * 4πrdr)
The gravitational potential at the center of the earth would equal;
V = ∫dV
V = ∫ -G(p * 4πrdr) {RE,0}
V = -4πGp∫rdr {RE,0}
V = -4πGp (r²/2) {RE,0}
V = -4πGp{RE²/2)
V = -4Gπ * 3M/4πRE³ * RE²/2
V = -3/2 GmE/RE
The gravitational potential energy of the system of the earth and the brick at the center equals
U = Vm
U = -3/2 GmE/RE * m
U = -3/2 (GmE)(m)/RE
Answer:
There is an inward force acting on the can
Explanation:
This inward force is known as Centripetal force and it is responsible for making the can whirl on the end of a string in circle and it is also directed towards the center around which the can is moving.