answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Step2247 [10]
2 years ago
5

A 15g bullet travelling at 100m/s strikes and is absorbed by a 75kg object. Find the speed at which the final object moves.

Physics
1 answer:
algol [13]2 years ago
4 0
What i got was
speed of impact that is 44.27 m/s
     or 159.38 km/h
time until impact is 4.525
 and last is the Energy at impact which I calauated outcome was 73500.00 joules

You might be interested in
Suppose we replace the mass in the video with one that is four times heavier. How far from the free end must we place the pivot
Llana [10]

We must place the pivot to keep the meter stick in balance at 90 cm (10 cm from the weight) from the free end.

Answer: Option B

<u>Explanation:</u>

In initial stage, the meter stick’s mass and mass hanged in meter stick at one end are same. Refer figure 1, the mater stick’s weight acts at the stick’s mid-point.

If in case, the meter stick is to be at balanced form, then the acting torques sum would be zero. So,

                  m \times g \times(x)+((m \times g)(x-50 \mathrm{cm}))=0

                  (m \times g \times x)-(50 \times m \times g)+(m \times g \times x)=0

Taking out ‘mg’ as common and we get

                  2 x-50=0

                  2 x=50

                  x=\frac{50}{2}=25 \mathrm{cm}

Hence, the stick should be pivoted at a distance of,

                 x^{\prime}=100 \mathrm{cm}-25 \mathrm{cm}=75 \mathrm{cm}

So, the stick should be pivoted at a distance of 75 cm at the free end

Now, replace mass with another mass. i.e., four times the initial mass (as given)

If in case, the meter stick is to be at balanced form, then the acting torques sum would be zero. So,

                   4 m g(x)+(m g)(x-50 c m)=0

                   4 m g x+m g x-50 m g=0

Taking out ‘mg’ as common and we get

                   5 x=50

                   x=\frac{50}{5}=10 \mathrm{cm}

Hence, the stick should be pivoted at a distance of,

                   x^{\prime}=100 \mathrm{cm}-10 \mathrm{cm}=10 \mathrm{cm}

So, the stick should be pivoted at a distance of 10 cm from the free end.

Therefore, the option B is correct 90 cm (10 cm from the weight).

3 0
2 years ago
A closed and elevated vertical cylindrical tank with diameter 2.00 m contains water to a depth of 0.800 m. A worker accidentally
vazorg [7]

Answer:

a. v1 = 5.06 m/s,  v2 = 3.96 m/s ,  R = 1.27

b. t = 1 hr, 11 min, 26 sec  

Explanation:

Using the Bernoulli's laws to use the conserved energy

a. Solve the speed and the radio of this speed of the tank is open to the air

p₀ + ρgh₀ + ½ρv₀² = p₁ + ρgh₁ + ½ρv₁²

5000Pa + 1000kg/m³ * 9.8m/s² * 0.800m + 0 = 0 + 0 + ½ * 1000kg/m³ * v²

v² = 25.68  m²/s²

v1 = 5.06 m/s

Because it is open the tank so P=0 pa so:

0 Pa + 1000kg/m³ * 9.8m/s² * 0.800m + 0 = 0 + 0 + ½ * 1000kg/m³ * v²

v² = 15.68  m²/s²

v2 = 3.96 m/s

The ratio on the air is solve using both velocities so:

R = v1/v2 = 5.06 m/s / 3.96 m/s

R = 1.27

b. Now to find the time it takes for the tank to drain if the tank is open to the air

dh/dt = -u

dh/dt = -v * A/A'

dh/dt = v*(.02m)²/(2.0m)² = -v / 10000

and we can further substitute for v:

dh/dt = -(1/1e4)*√[(p+9800h)/500]

Solve replacing

-(1000/49)*√(49000h) = t + C

-(1000/49)*√(49000*0.8) = 0 + C

C = - 4040.6

Then when h = 0,

t = 4286 s

t = 1 hr, 11 min, 26 sec  

6 0
2 years ago
Imagine you want to get 1 kcal of energy from a cow. How much energy would the cow need to get from plants? Why?
ZanzabumX [31]
1000 kcal because you only get 10% of the energy of the thing you eat
7 0
1 year ago
How much energy is needed to change the speed of a 1600 kg sport utility vehicle from 15.0 m/s to 40.0 m/s?
podryga [215]

Answer:

Energy needed = 1100 kJ

Explanation:

Energy needed = Change in kinetic energy

Initial velocity = 15 m/s

Mass, m = 1600 kg

\texttt{Initial kinetic energy = }\frac{1}{2}mv^2=0.5\times 1600\times 15^2=180000J

Final velocity = 40 m/s

\texttt{Final kinetic energy = }\frac{1}{2}mv^2=0.5\times 1600\times 40^2=1280000J

Energy needed = Change in kinetic energy = 1280000-180000 = 1100000J

Energy needed = 1100 kJ

4 0
2 years ago
You are on vacation in San Francisco and decide to take a cable car to see the city. A 5800-kgkg cable car goes 260 mm up a hill
Stella [2.4K]

Answer:

4.325\times10^6J

Explanation:

Mass of the cable car, m = 5800 kg

It goes 260 m up a hill, along a slope of \theta=17^o

Therefore vertical elevation of the car = 260sin\theta=260sin17^o=76.0166m

Now, when you get into the cable car, it's velocity is zero, that is, initial kinetic energy is zero (since K.E. = \frac{1}{2} mv^2). Similarly as the car reaches the top, it halts and hence final kinetic energy is zero.

Therefore the only possible change in the cable car system is the change in it's gravitational potential energy.

Hence, total change in energy = mgh = 5800\times9.81\times76.0166J=4.325\times10^6J

where, g = acceleration due to gravity

h = height/vertical elevation

4 0
2 years ago
Other questions:
  • How would reversing the wheel’s initial direction of rotation affect the result??
    6·1 answer
  • Which best describes a similarity between power plants that use water as an energy source and those that use wind as an energy s
    10·2 answers
  • Which is the BEST example of refraction?
    13·2 answers
  • A 1/10th scale model of an airplane is tested in a wind tunnel. The reynolds number of the model is the same as that of the full
    7·1 answer
  • A nonuniform, horizontal bar of mass m is supported by two massless wires against gravity. The left wire makes an angle ϕ1 with
    13·1 answer
  • A 1500 kg car is pushing a 4000 kg truck. The car and truck are accelerating at 2.0 m/s^2. Assuming that the frictional force on
    13·1 answer
  • The box leaves position x=0x=0 with speed v0v0. The box is slowed by a constant frictional force until it comes to rest at posit
    6·1 answer
  • Un tren parte de la ciudad A, a las 8 h. con una velocidad de 50 km/h, para llegar a la ciudad B a las 10 h. Allí permanece dura
    10·1 answer
  • Write a hypothesis about the effect of the angle of the track on the acceleration of the cart. Use the "if . . . then . . . beca
    7·1 answer
  • A girl weighing 45kg is standing on the floor, exerting a downward force of 200N on the floor. The force exerted on her by the f
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!