Answer:
A driver.
Explanation:
Using a driver while at least 350 yds away is better than using a iron, because it will be a waste of the par 4 as it is not as powerful as the driver.
The gravitational potential energy of the brick is 25.6 J
Explanation:
The gravitational potential energy of an object is the energy possessed by the object due to its position in a gravitational field.
Near the surface of a planet, the gravitational potential energy is given by

where
m is the mass of the object
g is the strength of the gravitational field
h is the height of the object relative to the ground
For the brick in this problem, we have:
m = 8 kg is its mass
g = 1.6 N/kg is the strenght of the gravitational field on the moon
h = 2 m is the height above the ground
Substituting, we find:

Learn more about potential energy:
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly
Answer:
h = v₀² / 2g
, h = k/4g x²
Explanation:
In this exercise we can use the law of conservation of energy at two points, the lowest, before the shot and the highest point that the mouse reaches
Starting point. Lower compressed spring
Em₀ = K = ½ m v²
Final point. Highest on the path
= U = mg h
As or no friction the energy is conserved
Em₀ = Em_{f}
½ m v₀²² = m g h
h = v₀² / 2g
We can also use as initial energy the energy stored in the spring that will later be transferred to the mouse
½ k x² = 2 g h
h = k/4g x²
Answer:
Explanation:
Let
h = height of balloon (in feet).
θ = angle made with line of sight and ground (in radians).
h = 300 tanθ

now
can be written as


When θ = π/4,

