Answer:
178200
g mile pounds
Explanation:
Work= Force * Distance= Fh
F=ma=mg where m is mass and g is acceleration due to gravity
Work= 165 pounds *g* 1080 m= 178200
g mile pounds
Answer:
The time rate of change in air density during expiration is 0.01003kg/m³-s
Explanation:
Given that,
Lung total capacity V = 6000mL = 6 × 10⁻³m³
Air density p = 1.225kg/m³
diameter of the trachea is 18mm = 0.018m
Velocity v = 20cm/s = 0.20m/s
dv /dt = -100mL/s (volume rate decrease)
= 10⁻⁴m³/s
Area for trachea =

0 - p × Area for trachea =



⇒

ds/dt = 0.01003kg/m³-s
Thus, the time rate of change in air density during expiration is 0.01003kg/m³-s
Remain the same
Explanation:
If the force exerted by the intern is doubled and the distance is halved, the work done by the intern remains the same.
Work done is the force applied to move a body through a distance.
Work done = F x d
where F is the applied force
d is the distance moved
Now;
if:
f = 2f
d =
d
Input the parameter:
Work done = fxd = 2f x
d = fd
The work done will still remain the same
learn more:
Work done brainly.com/question/9100769
#learnwithBrainly
Ordinary cells can convert chemical energy to electrical energy only, but rechargeable cells can also store electrical energy into chemical energy and vice versa. You will study more about it in your higher classes. secondary cells can be recharged and used again but dry cells cannot be recharged.
Answer:
There would be a pressure drop in the direction of the higher opening. This will force air to move in from the lower opening and force it to leave through the higher opening. This will create a convectional movement of air, cooling and ventilating the tunnel.
Explanation:
This is in accordance with bernoulli's law of fluid flow which states that the pressure exerted by a moving fluid is lesser than it would exert if it were at rest.