Answer:
15.7 m/s
Explanation:
The motion of the cannonball is a accelerated motion with constant acceleration g = 9.8 m/s^2 towards the ground (gravitational acceleration). Therefore, the velocity of the ball at time t is given by:

where
u = 0 is the initial velocity
g = 9.8 m/s^2 is the acceleration
t is the time
If we substitute t=1.6 s into the equation, we find the final velocity of the cannonball:

Answer:
Part a)

Part b)

Part c)

Explanation:
Part a)
The height of the diving board is given as

now the speed of the diver is given as

when the diver will jump into the water then his displacement in vertical direction is same as that of height of diving board
So we will have



Part b)

plug in the values in the above equation


Part c)
Horizontal distance moved by the diver is given as



so the distance from the edge of the pool is given as


Fm=Fe and am>ae
Hopefully this helps
:<span> </span><span>30.50 km/h = 30.50^3 m / 3600s = 8.47 m/s
At the top of the circle the centripetal force (mv²/R) comes from the car's weight (mg)
So, the net downward force from the car (Fn) = (weight - centripetal force) .. and by reaction this is the upward force provided by the road ..
Fn = mg - mv²/R
Fn = m(g - v²/R) .. .. 1800kg (9.80 - 8.47²/20.20) .. .. .. ►Fn = 11 247 N (upwards)
(b)
When the car's speed is such that all the weight is needed for the centripetal force .. then the net downward force (Fn), and the reaction from the road, becomes zero.
ie .. mg = mv²/R .. .. v² = Rg .. .. 20.20m x 9.80 = 198.0(m/s)²
►v = √198 = 14.0 m/s</span>