Answer:
We can conclude that there is a decrease in kinetic energy of the particles due to their elastic collision, since kinetic energy is directly proportional to squared velocity of the particles.
Explanation:
Given:
initial velocity of particle A, Ua = 5m/s
initial velocity of particle B, Ub = 10 m/s
final velocity of particle A, Va = 4m/s
final velocity of particle B, Vb = 7m/s
For particle A:
The final velocity is 1 less than the initial velocity.
For particle B:
The final velocity is 3 less than the initial velocity.
We can conclude that there is a loss in kinetic energy due to elastic collision of the two particles, since kinetic energy is directly proportional to squared velocity of the particles. A decrease in velocity means decrease in kinetic energy.
Answer:
0.647 nC
Explanation:
The force experienced by a charge due to the presence of an electric field is given by

where
q is the charge
E is the magnitude of the electric field
In this problem, each antenna is modelled as it was a single point charge, experiencing a force of

Therefore, if the electric field magnitude is

Then the charge on each antenna would be

Answer:
Explanation:
The specific heat of gold is 129 J/kgC
It's melting point is 1336 K
It's Heat of fusion is 63000 J/kg
Assuming that the mixture will be solid, the thermal energy to solidify the gold has to be less than that needed to raise the solid gold to the melting point. So,
The first is E1 = 63000 J/kg x 1.5 = 94500 J
the second is E2 = 129 J/kgC x 2 kg x (1336–1000)K = 86688 J
Therefore, all solid is not correct. You will have a mixture of solid and liquid.
For more detail, the difference between E1 and E2 is 7812 J, and that will melt
7812/63000 = 0.124 kg of the solid gold
Answer:
13.9
Explanation:
Apparent weight is the normal force. Sum of the forces on the alloy when it is submerged:
∑F = ma
N + B − W = 0
N + ρVg − mg = 0
6.6 + (0.78 × 1000) V (9.8) − (0.750) (9.8) = 0
V = 9.81×10⁻⁵
If x is the volume of the first material, and y is the volume of the second material, then:
x + y = 9.81×10⁻⁵
(7.87×1000) x + (4.50×1000) y = 0.750
Two equations, two variables. Solve with substitution:
7870 (9.81×10⁻⁵ − y) + 4500 y = 0.750
0.772 − 7870 y + 4500 y = 0.750
0.0222 = 3370 y
y = 6.58×10⁻⁶
x = 9.15×10⁻⁵
The ratio of the volumes is:
x/y = 13.9