Answer:
3×10^7 m/s or 0.10c (e)
Explanation: If the actual value of the speed of light were to be put into consideration.
Given that the speed of light is c = 3.0×10^8m/s
The alien spaceship is approaching at the rate of 10% of the speed of light.
10% of 3.0×10^8m/s
10/100 × 3.0×10^8m/s
0.1 ×3.0×10^8m/s
3×10^7 m/s. Which is the same thing as 0.1 of c = 0.1×c
Answer:
(a). The initial velocity is 28.58m/s
(b). The speed when touching the ground is 33.3m/s.
Explanation:
The equations governing the position of the projectile are


where
is the initial velocity.
(a).
When the projectile hits the 50m mark,
; therefore,

solving for
we get:

Thus, the projectile must hit the 50m mark in 1.75s, and this condition demands from equation (1) that

which gives

(b).
The horizontal velocity remains unchanged just before the projectile touches the ground because gravity acts only along the vertical direction; therefore,

the vertical component of the velocity is

which gives a speed
of


Given
m1(mass of red bumper): 225 Kg
m2 (mass of blue bumper): 180 Kg
m3(mass of green bumper):150 Kg
v1 (velocity of red bumper): 3.0 m/s
v2 (final velocity of the combined bumpers): ?
The law of conservation of momentum states that when two bodies collide with each other, the momentum of the two bodies before the collision is equal to the momentum after the collision. This can be mathemetaically represented as below:
Pa= Pb
Where Pa is the momentum before collision and Pb is the momentum after collision.
Now applying this law for the above problem we get
Momentum before collision= momentum after collision.
Momentum before collision = (m1+m2) x v1 =(225+180)x 3 = 1215 Kgm/s
Momentum after collision = (m1+m2+m3) x v2 =(225+180+150)x v2
=555v2
Now we know that Momentum before collision= momentum after collision.
Hence we get
1215 = 555 v2
v2 = 2.188 m/s
Hence the velocity of the combined bumper cars is 2.188 m/s
Answer: a) 456.66 s ; b) 564.3 m
Explanation: The time spend to cover any distance a constant velocity is given by:
v= distance/time so t=distance/v
The slower student time is: t=780m/0.9 m/s= 866.66 s
For the faster students t=780 m/1,9 m/s= 410.52 s
Therefore the time difference is 866.66-410.52= 456.14 s
In order to calculate the distance that faster student should walk
to arrive 5,5 m before that slower student, we consider the follow expressions:
distance =vslower*time1
distance= vfaster*time 2
The time difference is 5.5 m that is equal to 330 s
replacing in the above expression we have
time 1= 627 s
time2 = 297 s
The distance traveled is 564,3 m
Answer:
Common Sense
Explanation:
The chick has probably seen other chicks get caught by the Hawk and knows not to go near, or saw a giant bird flying straight towards it and used common sense to identify it as danger and run away. Although if this is for a test or a grade or something, please do not use the answer, it is most likely incorrect. This is honestly my best answer.