Let T1 and T2 be tension in ropes1 and 2 respectively.
<span>since system is stationary (equilibrium), considering both ropes + beam as a system </span>
<span>for horizontal equilibrium (no movement in that direction, so resultant force must be zero horizontally) </span>
<span>T1sin(20) = T2sin(30) </span>
<span>=> T1 = T2sin(30) / sin(20) </span>
<span>for vertical equilibrium, (no movement in this direction, so resultant force must be zero vertically) </span>
<span>T1cos(20) + T2cos(30) = mg </span>
<span>m = 900kg, substituting for T1 </span>
<span>T2sin(30)*cos(20)/sin(20) + T2cos(30) = 900g </span>
<span>2.328*T2 = 900*9.8 </span>
<span>T2 = 3788.65N </span>
<span>so T1 from (1) </span>
<span>T1 = 5535.21N</span>
Answer:
a) the values of the angle α is 45.5°
b) the required magnitude of the vertical force, F is 41 lb
Explanation:
Applying the free equilibrium equation along x-direction
from the diagram
we say
∑Fₓ = 0
Pcosα - 425cos30° = 0
525cosα - 368.06 = 0
cosα = 368.06/525
cosα = 0.701
α = cos⁻¹ (0.701)
α = 45.5°
Also Applying the force equation of motion along y-direction
∑Fₓ = ma
Psinα + F + 425sin30° - 600 = (600/32.2)(1.5)
525sin45.5° + F + 212.5 - 600 = 27.95
374.46 + F + 212.5 - 600 = 27.95
F - 13.04 = 27.95
F = 27.95 + 13.04
F = 40.99 ≈ 41 lb
Answer:
The magnitudes of the net magnetic fields at points A and B is 2.66 x
T
Explanation:
Given information :
The current of each wires, I = 4.7 A
dH = 0.19 m
dV = 0.41 m
The magnetic of straight-current wire :
B= μ
I/2πr
where
B = magnetic field (T)
μ
= 1.26 x
(N/
)
I = Current (A)
r = radius (m)
the magnetic field at points A and B is the same because both of wires have the same distance. Based on the right-hand rule, the net magnetic field of A and B is canceled each other (or substracted). Thus,
BH = μ
I/2πr
= (1.26 x
)(4.7)/(2π)(0.19)
= 4.96 x
T
BV = μ
I/2πr
= (1.26 x
)(4.7)/(2π)(0.41)
= 2.3 x
T
hence,
the net magnetic field = BH - BV
= 4.96 x
- 2.3 x 
= 2.66 x
T
Find Displacement and Distance
displacement ...
north is 700+400+100 =1200m n
south=1200m
1200-1200=0
east is 300+300=600m
west is 600m
600-600=0
back at dtart. displ zero
distance is 700+ 300m + 400 m + 600m + 1200m + 300m + 100m = 3600m
Answer:
shown in the attachment
Explanation:
The detailed step by step and necessary mathematical application is as shown in the attachment.