Answer:
a. y(x,t)= 2.05 mm cos[( 6.98 rad/m)x + (744 rad/s).
b. third harmonic
c. to calculate frequency , we compare with general wave equation
y(x,t)=Acos(kx+ωt)
from ωt=742t
ω=742
ω=2*pi*f
742/2*pi
f=118.09Hz
Explanation:
A fellow student of mathematical bent tells you that the wave function of a traveling wave on a thin rope is y(x,t)=2.30mmcos[(6.98rad/m)x+(742rad/s)t]. Being more practical-minded, you measure the rope to have a length of 1.35 m and a mass of 3.38 grams. Assume that the ends of the rope are held fixed and that there is both this traveling wave and the reflected wave traveling in the opposite direction.
A) What is the wavefunction y(x,t) for the standing wave that is produced?
B) In which harmonic is the standing wave oscillating?
C) What is the frequency of the fundamental oscillation?
a. y(x,t)= 2.05 mm cos[( 6.98 rad/m)x + (744 rad/s).
b. lambda=2L/n
when comparing the wave equation with the general wave equation , we get the wavelength to be
2*pi*x/lambda=6.98x
lambda=0.9m
we use the equation
lambda=2L/n
n=number of harmonics
L=length of string
0.9=2(1.35)/n
n=2.7/0.9
n=3
third harmonic
c. to calculate frequency , we compare with general wave equation
y(x,t)=Acos(kx+ωt)
from ωt=742t
ω=742
ω=2*pi*f
742/2*pi
f=118.09Hz
Answer:
Explanation:
Given
Original Frequency 
apparent Frequency 
There is change in frequency whenever source move relative to the observer.
From Doppler effect we can write as

where
apparent frequency
v=velocity of sound in the given media
velocity of source
velocity of observer
here 




i.e.fork acquired a velocity of 
distance traveled by fork is given by

where v=final velocity
u=initial velocity
a=acceleration
s=displacement



<span>Depends on the precision you're working to.
proton mass ~ 1.00728 amu
neutron mass ~ 1.00866 amu
electron mass ~ electron mass = 0.000549 amu
Binding mass is:
mass of constituents - mass of atom
Eg for nitrogen:
(7*1.00728)-(7*1.00866)-(7*0.000549)
-14.003074 = 0.11235amu
Binding energy is:
E=mc^2 where c is the speed of light. Nuclear physics is usually done in MeV[1] where 1 amu is about 931.5MeV/c^2. So:
0.11235 * 931.5 = 104.6MeV
Binding energy per nucleon is total energy divided by number of nucleons. 104.6/14 = 7.47MeV
This is probably about right; it sounds like the right size!
Do the same thing for D/E/F and recheck using your numbers & you shouldn't go far wrong :)
1 - have you done this? MeV is Mega electron Volts, where one electronVolt (or eV) is the change in potential energy by moving one electron up a 1 volt potential. ie energy = charge * potential, so 1eV is about 1.6x10^-19J (the same number as the charge of an electron but in Joules).
It's a measure of energy, but by E=mc^2 you can swap between energy and mass using the c^2 factor. Most nuclear physicists report mass in units of MeV/c^2 - so you know that its rest mass energy is that number in MeV.</span>
Answer:3.95 m/s
Explanation:
Given
mass of object 

radius of circle
initial Position 
angular displacement 
8.95 radian can be written as

i.e. Particle is at first quadrant with 

(c)velocity is 

the answer is not D ....... the answer is {B} if you got it right give me a 5 stars and a hard