Answer:
The angle between the red and blue light is 1.7°.
Explanation:
Given that,
Wavelength of red = 656 nm
Wavelength of blue = 486 nm
Angle = 37°
Suppose we need to find the angle between the red and blue light as it leaves the prism


We need to calculate the angle for red wavelength
Using Snell's law,

Put the value into the formula



We need to calculate the angle for blue wavelength
Using Snell's law,

Put the value into the formula



We need to calculate the angle between the red and blue light
Using formula of angle

Put the value into the formula


Hence, The angle between the red and blue light is 1.7°.
Humans can see wavelengths in the visible part of the electromagnetic spectrum. That is the range of approximately 400 - 700 nm. Honeybees can see visible light and about 100 nm more in the ultraviolet part of the electromagnetic spectrum. That is approximately 300 - 700 nm.
Answer:
Explanation:
Given that,
A lady falling has a final velocity of 4m/s
v = 4m/s
Mass of the lady is 60kg.
m = 60kg
Using conservation of energy, the potential energy of the body from the point where the lady is dropping is converted to the final kinetic energy of the lady.
Therefore,
P.E = K.E(final) = ½mv²
P.E = ½ × 60 × 4²
P.E = 480 J.
Answer:
a) 
b) 2.36 cm
Explanation:
a) The horizontal distance = x = 6 cm
1 cm = 0.01 m
6 cm = 6 cm * 0.01 m/cm = 0.6 m
Therefore the time taken (t) by the electron to travel from the emission point to the screen can be gotten from:
x = t * 


b) The vertical distance (y) traveled by the electon before it hits the screen is given by:
