To solve this problem we will start from the definition of energy of a spring mass system based on the simple harmonic movement. Using the relationship of equality and balance between both systems we will find the relationship of the amplitudes in terms of angular velocities. Using the equivalent expressions of angular velocity we will find the final ratio. This is,
The energy of the system having mass m is,

The energy of the system having mass 2m is,

For the two expressions mentioned above remember that the variables mean
m = mass
Angular velocity
A = Amplitude
The energies of the two system are same then,



Remember that

Replacing this value we have then


But the value of the mass was previously given, then



Therefore the ratio of the oscillation amplitudes it is the same.
Answer:
hydrogen bridge
Explanation:
Joule's relationship to heat and temperature is true for all materials where we assume that interatomic forces are linear, when atoms separate these forces decrease. There is a point where the separation between atoms is enough that thermal agitation can separate the molecules and there is a change of state, generally from solid to liquid and from liquid to vapor. When these changes of state are occurring all the energy supplied is used to break the links, so the temperature does not change.
In the specific case of water, there is a bond called a hydrogen bridge that breaks around 4ºC, therefore, at this temperature there is a deviation from the curve since this link is being broken, this does not lead to a change of macroscopic state.
For the other temperatures the water behaves like the other bodies.
Answer : The rate of heat transfer to the water is, 37.92 kJ/min
Explanation : Given,
Time = 10 min
Mass of water = 200 g
Latent heat of fusion of water = 334 J/g
Latent heat of vaporization of water = 2230 J/g
Now we have to calculate the rate of heat transfer to the water.

Now put all the given values in the above formula, we get:


Thus, the rate of heat transfer to the water is, 37.92 kJ/min
Answer:
the tension in the rope between the boxes is equal to 88 N
Explanation:
given,
the force applied on one body F = 176 N
When two bodies are moving on horizontal plane at constant velocity then their kinetic friction (f k) is equal to applied force F
According to newton third law the resultant force acting on one body is equal to the resultant force acting on the another body.
T is the tension in the rope

T - F = - (T - F)
T - 176 = - (T - 0)
2 T = 176
T = 176/2 = 88 N
so, the tension in the rope between the boxes is equal to 88 N
Answer:
The coin has a diameter of 2.67 cm
Explanation:
First, we need to find the volume of each coin by dividing the total volume of silver by the number of coins. We have also to do a conversion of units in terms of centimeters as follows:

Then, we define the coin as a tiny cilinder to determine its diameter. In that order we use the cilinder's volumen equation as follows:

Finally, we know that the diameter is twice the radius, therefore the diameter of each coin is 2.67 cm.