For this problem, we use the conservation of momentum as a solution. Since momentum is mass times velocity, then,
m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'
where
v₁ and v₂ are initial velocities of cart A and B, respectively
v₁' and v₂' are final velocities of cart A and B, respectively
m₁ and m₂ are masses of cart A and B, respectively
(7 kg)(0 m/s) + (3 kg)(0 m/s) = (7 kg)(v₁') + (3 kg)(6 m/s)
Solving for v₁',
v₁' = -2.57 m/s
<em>Therefore, the speed of cart A is at 2.57 m/s at the direction opposite of cart B.</em>
Answer:
A) 0.957 J
Explanation:detailed explanation and calculation is shown in the image below
Answer:
The length of a tube and number of rounds are 0.848 m and
.
Explanation:
Given that,
Wavelength 
m = 160000
We need to calculate the length
Using formula of wavelength
Laser tube behave like closed pipe



Distance traveled by pulse of light in one back and fourth trip



We need to calculate the time
Using formula for time



We need to calculate the number of round
Using formula of number of round



Hence, The length of a tube and number of rounds are 0.848 m and
.
Answer:
(E) The two objects reach the bottom of the incline at the same time.
Explanation:
Given;
first object with mass, m
second object with mass, 5m
The acceleration of gravity for both object is the same = 9.8 m/s²
Since both objects have the same acceleration of gravity, and no external force due friction (frictionless inclined plane), they will reach bottom of the inclined at the time.
Thus, the acceleration due to gravity is constant for all objects regardless of their masses.
Therefore, the correct option is E;
(E) The two objects reach the bottom of the incline at the same time.
The Energy is Kinetic Energy.
Kinetic Energy = 1/2*mv², Where m is mass in kg, v is velocity in m/s
Energy is 33750 Juoles, v = 30m/s
1/2*mv² = E
1/2*m*30² = 33750
m = (2*33750) / (30²) Using a calculator
m = 75 kg
Mass of object is 75 kg.