It is given that by using track and cart we can record the time and the distance travelled and also the speed of the cart can be recorded. With all this data we can solve questions on the laws of motion.
Like using the first law of motion we can determine the force of gravity acting on the cart that has moved a certain distance and the velocity or the speed of card has already been registered and since time is known putting the values in formula would help us calculate the gravitational pull acting on cart.
Hertz is a measurement of the frequency that a wave is occurring.
Answer:
See explanation
Explanation:
First, in order for you to understand, remember the basic concept of meniscus in graduated cylinder.
<em>"The meniscus is the curve seen at the top of a liquid in response to its container. The meniscus can be either concave or convex, depending on the surface tension of the liquid and its adhesion to the wall of the container".</em>
Now, according to this definition, and for water, the reading of the volume must be donde at the bottom of the curve of the meniscus. This is because the water gives a concave curve.
If you read it and matches the height of water, you are getting two results:
One, get an accurate value or volume, because it's been done at eye level.
The second fact is that when you do the reading this way, The total pressure is made equal to the atmospheric pressure by adjusting the height of the cylinder until the water level is equal.
Answer:
So Tammy must move with speed 4.76 m/s in opposite direction of Jackson
Explanation:
As per law of conservation of momentum we know that there is no external force on it
So here we can say that initial momentum of the system must be equal to the final momentum of the system
now we have

final they both comes to rest so here we can say that final momentum must be zero
now we have


The work done is the product between the intensity of the force applied F, the amount of the displacement d of the book and the cosine of the angle

between the direction of the force and the direction of the displacement:

In our problem, the student is lifting the book, so he is applying a force directed upward, and the book is moving upward, so F and d are parallel and therefore the angle is zero, so

Therefore, the work done is